Degree growth of meromorphic surface maps
Boucksom, Sébastien ; Favre, Charles ; Jonsson, Mattias
Duke Math. J., Tome 141 (2008) no. 1, p. 519-538 / Harvested from Project Euclid
We study the degree growth of iterates of meromorphic self-maps of compact Kähler surfaces. Using cohomology classes on the Riemann-Zariski space, we show that the degrees grow similarly to those of mappings that are algebraically stable on some bimeromorphic model
Publié le : 2008-02-15
Classification:  32H50,  14E05,  14C17
@article{1203087636,
     author = {Boucksom, S\'ebastien and Favre, Charles and Jonsson, Mattias},
     title = {Degree growth of meromorphic surface maps},
     journal = {Duke Math. J.},
     volume = {141},
     number = {1},
     year = {2008},
     pages = { 519-538},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203087636}
}
Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias. Degree growth of meromorphic surface maps. Duke Math. J., Tome 141 (2008) no. 1, pp.  519-538. http://gdmltest.u-ga.fr/item/1203087636/