We prove that the dual or any quotient of a separable reflexive Banach space with the unconditional tree property (UTP) has the UTP. This is used to prove that a separable reflexive Banach space with the UTP embeds into a reflexive Banach space with an unconditional basis. This solves several longstanding open problems. In particular, it yields that a quotient of a reflexive Banach space with an unconditional finite-dimensional decomposition (UFDD) embeds into a reflexive Banach space with an unconditional basis