On four-point regular BVPs for second-order quasi-linear ODEs
Andres, Ján ; Vlček, Vladimír
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992), p. 37-44 / Harvested from Czech Digital Mathematics Library
Publié le : 1992-01-01
Classification:  34B10,  34B15
@article{120279,
     author = {J\'an Andres and Vladim\'\i r Vl\v cek},
     title = {On four-point regular BVPs for second-order quasi-linear ODEs},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {31},
     year = {1992},
     pages = {37-44},
     zbl = {0769.34019},
     mrnumber = {1212604},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120279}
}
Andres, Ján; Vlček, Vladimír. On four-point regular BVPs for second-order quasi-linear ODEs. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) pp. 37-44. http://gdmltest.u-ga.fr/item/120279/

J. Andres A four-point boundary value problem for the second-order ordinary differential equations, Arch. Math. (Basel) 53 (1989), 384-389. (1989) | MR 1016002 | Zbl 0667.34024

I. Bihari Notes on a nonlinear integral equation, Stud. Sci. Math. Hung. 2 (1967), 1-6. (1967) | MR 0211231 | Zbl 0147.10302

L. Collatz Funkcionální analýza a numerická matematika, SNTL, Praha 1970. (1970)

A. G. Lomtatidze On a singular three-point boundary value problem, Trudy IPM Tbilisi 17 (1986), 122-134 (Russian). (1986) | MR 0853277 | Zbl 0632.34011

M. A. Neumark Lineare Differentialoperatoren, VEB DVW, Berlin 1960. (1960) | MR 0216049 | Zbl 0092.07902

I. Rachůnková A four-point problem for ordinary differential equations of the second order, Arch. Math. (Brno) 25, 4 (1989), 175-184. (1989) | MR 1188062

I. Rachůnková Existence and uniqueness of solutions of four-point boundary value problems for 2nd order differential equations, Czech. Math. J. 39 (1989), 692-700. (1989) | MR 1018005

G. F. Roach Green’s functions, Cambridge Univ. Press, Cambridge 1982. (1982) | Zbl 0522.65075