Three-point boundary value problem for nonlinear third-order differential equations with parameter
Staněk, Svatoslav
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991), p. 61-74 / Harvested from Czech Digital Mathematics Library
Publié le : 1991-01-01
Classification:  34B05,  34B10,  34B15
@article{120267,
     author = {Stan\v ek, Svatoslav},
     title = {Three-point boundary value problem for nonlinear third-order differential equations with parameter},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {30},
     year = {1991},
     pages = {61-74},
     zbl = {0752.34019},
     mrnumber = {1166426},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120267}
}
Staněk, Svatoslav. Three-point boundary value problem for nonlinear third-order differential equations with parameter. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) pp. 61-74. http://gdmltest.u-ga.fr/item/120267/

Pachpatte B.G. On a certain boundary value problem for third order differential equations, An.st.Univ.Iasi, XXXII, f.l, s.Ia, Mathematica, (1986), 55-61. (1986) | MR 0893027 | Zbl 0619.34024

Stanӗk S. Three-point boundary value problem of nonlinear secoпd order differential equation with parameter, (to appear).

Stanӗk S. Three-point boundary value problem of retarded functional differential equation of the second order with parameter, (to appear).

Tineo A. Existence of solutions for a class of boundary value problems for the equation x"= F(t,x,x ,x"), Comment. Math. Univ. Carolinae, 29, 2 (1988), 285-291. (1988) | MR 0957397