@article{120244, author = {Tom\'a\v s Kojeck\'y}, title = {An approximative solution of the generalized eigenvalue problem}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {29}, year = {1990}, pages = {65-72}, zbl = {0781.47029}, mrnumber = {1144831}, language = {en}, url = {http://dml.mathdoc.fr/item/120244} }
Kojecký, Tomáš. An approximative solution of the generalized eigenvalue problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) pp. 65-72. http://gdmltest.u-ga.fr/item/120244/
Linejnye operatory I (II), Mir, Moskva 1962 (1966). (1962) | MR 0216304
Some results about convergence of Kellogg’s iterations in eigenvalue problems, Czech. Math. J. (to appear).
Iterative solution of eigenvalue problems for normal operator, Apl. mat. (to appear). | MR 1042851
On the Kellogg method and its variants for finding of eigenvalues and eigenfunctions of linear self-adjoint operators, ZAA Bd. 2(4) 1983, 291-297. (1983) | MR 0725146 | Zbl 0532.65042
Iterations of linear bounded operators in non-self-adjoint eigenvalue problems and Kellogg’s iteration process, Czech. Math. J. 12 (1962), 536-554. (1962) | MR 0149297 | Zbl 0192.23701
General inverses, normal solvability and iteration for singular operator equations, nonlinear functional analysis and applications, Academia Press, New York, 1971, 311-359. (1971) | MR 0275246