An approximative solution of the generalized eigenvalue problem
Kojecký, Tomáš
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990), p. 65-72 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  47A75,  47B15,  65J10
@article{120244,
     author = {Tom\'a\v s Kojeck\'y},
     title = {An approximative solution of the generalized eigenvalue problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {29},
     year = {1990},
     pages = {65-72},
     zbl = {0781.47029},
     mrnumber = {1144831},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120244}
}
Kojecký, Tomáš. An approximative solution of the generalized eigenvalue problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) pp. 65-72. http://gdmltest.u-ga.fr/item/120244/

Dunford N.; Schwartz J.T. Linejnye operatory I (II), Mir, Moskva 1962 (1966). (1962) | MR 0216304

Kojecký T. Some results about convergence of Kellogg’s iterations in eigenvalue problems, Czech. Math. J. (to appear).

Kojecký T. Iterative solution of eigenvalue problems for normal operator, Apl. mat. (to appear). | MR 1042851

Kolomý J. On the Kellogg method and its variants for finding of eigenvalues and eigenfunctions of linear self-adjoint operators, ZAA Bd. 2(4) 1983, 291-297. (1983) | MR 0725146 | Zbl 0532.65042

Marek I. Iterations of linear bounded operators in non-self-adjoint eigenvalue problems and Kellogg’s iteration process, Czech. Math. J. 12 (1962), 536-554. (1962) | MR 0149297 | Zbl 0192.23701

Nashed M.Z. General inverses, normal solvability and iteration for singular operator equations, nonlinear functional analysis and applications, Academia Press, New York, 1971, 311-359. (1971) | MR 0275246