Stability of the Gibbs sampler for Bayesian hierarchical models
Papaspiliopoulos, Omiros ; Roberts, Gareth
Ann. Statist., Tome 36 (2008) no. 1, p. 95-117 / Harvested from Project Euclid
We characterize the convergence of the Gibbs sampler which samples from the joint posterior distribution of parameters and missing data in hierarchical linear models with arbitrary symmetric error distributions. We show that the convergence can be uniform, geometric or subgeometric depending on the relative tail behavior of the error distributions, and on the parametrization chosen. Our theory is applied to characterize the convergence of the Gibbs sampler on latent Gaussian process models. We indicate how the theoretical framework we introduce will be useful in analyzing more complex models.
Publié le : 2008-02-15
Classification:  Geometric ergodicity,  capacitance,  collapsed Gibbs sampler,  state-space models,  parametrization,  Bayesian robustness,  65C05,  60J27
@article{1201877295,
     author = {Papaspiliopoulos, Omiros and Roberts, Gareth},
     title = {Stability of the Gibbs sampler for Bayesian hierarchical models},
     journal = {Ann. Statist.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 95-117},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1201877295}
}
Papaspiliopoulos, Omiros; Roberts, Gareth. Stability of the Gibbs sampler for Bayesian hierarchical models. Ann. Statist., Tome 36 (2008) no. 1, pp.  95-117. http://gdmltest.u-ga.fr/item/1201877295/