Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$
Pavlíková, Elena
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982), p. 69-78 / Harvested from Czech Digital Mathematics Library
Publié le : 1982-01-01
Classification:  34A30,  34C10,  34C20
@article{120121,
     author = {Elena Pavl\'\i kov\'a},
     title = {Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {21},
     year = {1982},
     pages = {69-78},
     zbl = {0522.34033},
     mrnumber = {0702609},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120121}
}
Pavlíková, Elena. Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) pp. 69-78. http://gdmltest.u-ga.fr/item/120121/

M. Háčik Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y'' + q(t)y = 0$ with regard to the basis $\alpha, \beta$, Arch. Math. 8, Brno, (1972), 79-83. (1972) | MR 0326063

M. Laitoch L’équation associeé dans la théorie des transformations des équations différentielles du second ordre, Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. (1963) | MR 0276527 | Zbl 0256.34005

L. Lorch M. Muldoon P. Szego Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canad. Journal of Math., XXIV (1972), 349-368. (1972) | MR 0298113

E. Pavlíková Higher monotonicity properties of certain Sturm-Liouville functions, Archivum Mathematicum, Brno, (to appear). | MR 0672321

J. Vosmanský Certain higher monotonicity properties of Bessel functions, Arch. Math. 1, Brno, (1977), 55-64. (1977) | MR 0463571

J. Vosmanský Certain higher monotonicity properties of i-th derivatives of solutions of $y'' + a(t)y' + b(t)y = 0$, Arch. Math. 2, Brno, (1974), 87-102. (1974) | MR 0399578