@article{120121, author = {Elena Pavl\'\i kov\'a}, title = {Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {21}, year = {1982}, pages = {69-78}, zbl = {0522.34033}, mrnumber = {0702609}, language = {en}, url = {http://dml.mathdoc.fr/item/120121} }
Pavlíková, Elena. Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) pp. 69-78. http://gdmltest.u-ga.fr/item/120121/
Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y'' + q(t)y = 0$ with regard to the basis $\alpha, \beta$, Arch. Math. 8, Brno, (1972), 79-83. (1972) | MR 0326063
L’équation associeé dans la théorie des transformations des équations différentielles du second ordre, Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. (1963) | MR 0276527 | Zbl 0256.34005
Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canad. Journal of Math., XXIV (1972), 349-368. (1972) | MR 0298113
Higher monotonicity properties of certain Sturm-Liouville functions, Archivum Mathematicum, Brno, (to appear). | MR 0672321
Certain higher monotonicity properties of Bessel functions, Arch. Math. 1, Brno, (1977), 55-64. (1977) | MR 0463571
Certain higher monotonicity properties of i-th derivatives of solutions of $y'' + a(t)y' + b(t)y = 0$, Arch. Math. 2, Brno, (1974), 87-102. (1974) | MR 0399578