Two-point boundary problem in a second order nonhomogeneous linear differential equation
Staněk, Svatoslav
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979), p. 59-71 / Harvested from Czech Digital Mathematics Library
Publié le : 1979-01-01
Classification:  34A30,  34B05,  34B10,  34C10
@article{120083,
     author = {Stan\v ek, Svatoslav},
     title = {Two-point boundary problem in a second order nonhomogeneous linear differential equation},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {18},
     year = {1979},
     pages = {59-71},
     zbl = {0437.34012},
     mrnumber = {0589848},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120083}
}
Staněk, Svatoslav. Two-point boundary problem in a second order nonhomogeneous linear differential equation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 18 (1979) pp. 59-71. http://gdmltest.u-ga.fr/item/120083/

O. Borůvka Linear Differential Transformations of the Second Order, The English Universities Press, London 1971. (1971) | MR 0463539

О. Борувка Теория глобальных свойств обыкновенных дифференциальных уравнений второго порядка, Дифференциальные уравнения, Но. 8, T. XII, 1976, 1347-1383. (1976) | Zbl 1170.01332

M. Greguš F. Neuman; F. M. Arscott Three-point boundary problems in differential equations, J. London Math. Soc. (2), 3 (1971), 429-436. (1971) | MR 0283282

P. Hartman Ordinary Differential Equations, (in Russian) Moscow 1970. (1970) | Zbl 0214.09101

M. Laitoch A modification of the Sturm's theorem on separating zeros of solutions of a linear differential equation of the 2nd order, Acta Univ. Palackianae Olomucensis, 57 (1978), 27-32. (1978) | MR 0554033 | Zbl 0429.34011

A. Skidmore; W. Leighton On the differential equation $y" + p(x)y= f(x)$, J. Math. Anal. Appl. 43 (1973), 46-55. (1973) | MR 0315213

S. Staněk On the properties of the fundamental dispersions of the equation $y" = \lambda q(t)y$, Acta Univ. Palackianae Olomucensis, 61 (1979), 51-58. (1979) | MR 0589847