The elementary obstruction and homogeneous spaces
Borovoi, M. ; Colliot-Thélène, J.-L. ; Skorobogatov, A. N.
Duke Math. J., Tome 141 (2008) no. 1, p. 321-364 / Harvested from Project Euclid
Let $k$ be a field of characteristic zero, and let ${\overline k}$ be an algebraic closure of $k$ . For a geometrically integral variety $X$ over $k$ , we write ${\overline k}(X)$ for the function field of ${\overline X}=X\times_k{\overline k}$ . If $X$ has a smooth $k$ -point, the natural embedding of multiplicative groups ${\overline k}^*\hookrightarrow {\overline k}(X)^* $ admits a Galois-equivariant retraction. ¶ In the first part of this article, equivalent conditions to the existence of such a retraction are given over local and then over global fields. Those conditions are expressed in terms of the Brauer group of $X$ . ¶ In the second part of the article, we restrict attention to varieties that are homogeneous spaces of connected but otherwise arbitrary algebraic groups, with connected geometric stabilizers. For $k$ local or global, and for such a variety $X$ , in many situations but not all, the existence of a Galois-equivariant retraction to ${\overline k}^*\hookrightarrow {\overline k}(X)^*$ ensures the existence of a $k$ -rational point on $X$ . For homogeneous spaces of linear algebraic groups, the technique also handles the case where $k$ is the function field of a complex surface.
Publié le : 2008-02-01
Classification:  14G05,  11G99,  12G05,  11E72,  14F22,  14K15,  14M17,  20G99
@article{1200601794,
     author = {Borovoi, M. and Colliot-Th\'el\`ene, J.-L. and Skorobogatov, A. N.},
     title = {The elementary obstruction and homogeneous spaces},
     journal = {Duke Math. J.},
     volume = {141},
     number = {1},
     year = {2008},
     pages = { 321-364},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1200601794}
}
Borovoi, M.; Colliot-Thélène, J.-L.; Skorobogatov, A. N. The elementary obstruction and homogeneous spaces. Duke Math. J., Tome 141 (2008) no. 1, pp.  321-364. http://gdmltest.u-ga.fr/item/1200601794/