A singular perturbation problem with integral curvature bound
Nagase, Yuko ; Tonegawa, Yoshihiro
Hiroshima Math. J., Tome 37 (2007) no. 1, p. 455-489 / Harvested from Project Euclid
We consider a singular perturbation problem of Modica-Mortola functional as the thickness of diffused interface approaches to zero. We assume that sequence of functions have uniform energy and square-integral curvature bounds in two dimension. We show that the limit measure concentrates on one rectifiable set and has square integrable curvature.
Publié le : 2007-11-15
Classification:  diffused interface,  curvature,  phase field model,  35J60,  35B25,  35J20,  80A22
@article{1200529813,
     author = {Nagase, Yuko and Tonegawa, Yoshihiro},
     title = {A singular perturbation problem with integral curvature bound},
     journal = {Hiroshima Math. J.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 455-489},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1200529813}
}
Nagase, Yuko; Tonegawa, Yoshihiro. A singular perturbation problem with integral curvature bound. Hiroshima Math. J., Tome 37 (2007) no. 1, pp.  455-489. http://gdmltest.u-ga.fr/item/1200529813/