An index of an enhanced state of a virtual link diagram
Kamada, Naoko
Hiroshima Math. J., Tome 37 (2007) no. 1, p. 409-429 / Harvested from Project Euclid
We construct a polynomial invariant of a virtual magnetic graph diagram by defining an index of an enhanced state. For a virtual link diagram, it equals the Miyazawa polynomial and then the maximal degree on $t$ of the polynomials not only gives a lower bound of the real crossing number but also that of the virtual crossing number. Moreover, by definition we can calculate the polynomial for a link in a thickened surface or a Gauss chord diagram directly without transforming it into a virtual link diagram.
Publié le : 2007-11-15
Classification:  knot theory,  virtual knot,  Jones-Kauffman polynomial,  Miyazawa polynomial,  57M25,  57M27
@article{1200529811,
     author = {Kamada, Naoko},
     title = {An index of an enhanced state of a virtual link diagram},
     journal = {Hiroshima Math. J.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 409-429},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1200529811}
}
Kamada, Naoko. An index of an enhanced state of a virtual link diagram. Hiroshima Math. J., Tome 37 (2007) no. 1, pp.  409-429. http://gdmltest.u-ga.fr/item/1200529811/