On the extension of $\mathrm {G}_{2}(3^{2n+1})$ by the exceptional graph automorphism
Brunat, Olivier
Osaka J. Math., Tome 44 (2007) no. 1, p. 973-1023 / Harvested from Project Euclid
The main aim of this paper is to compute the character table of $\mathrm{G}_{2}(3^{2n+1})\rtimes\langle \sigma \rangle$, where $\sigma$ is the graph automorphism of $\mathrm{G}_{2}(3^{2n+1})$ such that the fixed-point subgroup $\mathrm{G}_{2}(3^{2n+1})^{\sigma}$ is the Ree group of type $\mathrm{G}_{2}$. As a consequence we explicitly construct a perfect isometry between the principal $p$-blocks of $\mathrm{G}_{2}(3^{2n+1})^{\sigma}$ and $\mathrm{G}_{2}(3^{2n+1})\rtimes\langle \sigma \rangle$ for prime numbers dividing $q^2-q+1$.
Publié le : 2007-12-15
Classification:  20C15,  20C33
@article{1199719416,
     author = {Brunat, Olivier},
     title = {On the extension of $\mathrm {G}\_{2}(3^{2n+1})$ by the exceptional graph automorphism},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 973-1023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1199719416}
}
Brunat, Olivier. On the extension of $\mathrm {G}_{2}(3^{2n+1})$ by the exceptional graph automorphism. Osaka J. Math., Tome 44 (2007) no. 1, pp.  973-1023. http://gdmltest.u-ga.fr/item/1199719416/