Fundamental theorems of Lagrangian surfaces in $S^{2}\times S^{2}$
Kimura, Makoto ; Suizu, Kaoru
Osaka J. Math., Tome 44 (2007) no. 1, p. 829-850 / Harvested from Project Euclid
Existence and $\mathit{SO}(3) \times \mathit{SO}(3)$-congruence of Lagrangian immersion from oriented 2-dimensional Riemannian manifold to the Riemannian product of 2-spheres are studied. In particular, we will show that two minimal Lagrangian immersions are $\mathit{SO}(3) \times \mathit{SO}(3)$-congruent if and only if the corresponding angle functions are coincide.
Publié le : 2007-12-15
Classification:  53C20
@article{1199719407,
     author = {Kimura, Makoto and Suizu, Kaoru},
     title = {Fundamental theorems of Lagrangian surfaces in $S^{2}\times S^{2}$},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 829-850},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1199719407}
}
Kimura, Makoto; Suizu, Kaoru. Fundamental theorems of Lagrangian surfaces in $S^{2}\times S^{2}$. Osaka J. Math., Tome 44 (2007) no. 1, pp.  829-850. http://gdmltest.u-ga.fr/item/1199719407/