Cohen-Macaulay local rings of embedding dimension $e+d-k$
Wang, Hsin-Ju
Osaka J. Math., Tome 44 (2007) no. 1, p. 817-827 / Harvested from Project Euclid
In this paper, we prove the following. Let $(R, \mathfrak{m})$ be a $d$-dimensional Cohen-Macaulay local ring with multiplicity $e$ and embedding dimension $v=e+d-k$, where $k \geq 3$ and $e-k>1$. If $\lambda(\mathfrak{m}^3/J\mathfrak{m}^2)=1$ and $\mathfrak{m}^3\subseteq J\mathfrak{m}$, where $J$ is a minimal reduction of $\mathfrak{m}$, then $3 \leq s \leq \tau +k-1$, where $s$ is the degree of the $h$-polynomial of $R$ and $\tau$ is the Cohen-Macaulay type of $R$.
Publié le : 2007-12-15
Classification:  13D40,  13H10
@article{1199719406,
     author = {Wang, Hsin-Ju},
     title = {Cohen-Macaulay local rings of embedding dimension $e+d-k$},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 817-827},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1199719406}
}
Wang, Hsin-Ju. Cohen-Macaulay local rings of embedding dimension $e+d-k$. Osaka J. Math., Tome 44 (2007) no. 1, pp.  817-827. http://gdmltest.u-ga.fr/item/1199719406/