Intermediate Value Theorem for Analytic Functions on a Levi-Civita Field
Shamseddine, Khodr ; Berz, Martin
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 1001-1015 / Harvested from Project Euclid
The proof of the intermediate value theorem for power series on a Levi-Civita field will be presented. After reviewing convergence criteria for power series [19], we review their analytical properties [18]. Then we state and prove the intermediate value theorem for a large class of functions that are given locally by power series and contain all the continuations of real power series: using iteration, we construct a sequence that converges strongly to a point at which the intermediate value will be assumed.
Publié le : 2007-12-14
Classification:  Levi-Civita field,  non-Archimedean analysis,  power series,  analytic functions,  intermediate value theorem,  12J25,  26E30,  30G06,  46S10
@article{1197908910,
     author = {Shamseddine, Khodr and Berz, Martin},
     title = {Intermediate Value Theorem for Analytic Functions on a Levi-Civita Field},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 1001-1015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1197908910}
}
Shamseddine, Khodr; Berz, Martin. Intermediate Value Theorem for Analytic Functions on a Levi-Civita Field. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  1001-1015. http://gdmltest.u-ga.fr/item/1197908910/