Ultrametric Cn-Spaces of Countable Type
Schikhof, W.H.
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 993-1000 / Harvested from Project Euclid
Let $K$ be a non-trivially non-archimedean valued field that is complete with respect to the valuation $\left| \, \, \right| : K \longrightarrow[0,\infty)$, let $X$ be a non-empty subset of $K$ without isolated points. For $n \in \{ 0,1, \ldots \}$ the $K$-Banach space $BC^n(X)$, consisting of all $C^n$-functions $X \longrightarrow K$ whose difference quotients up to order $n$ are bounded, is defined in a natural way. It is proved that $BC^n(X)$ is of countable type if and only if $X$ is compact. In addition we will show that $BC^{\infty}(X) : = \bigcap _n BC^n(X)$, which is a Fréchet space with its usual projective topology, is of countable type if and only if $X$ is precompact.
Publié le : 2007-12-14
Classification:  non-archimedean Banach spaces,  differentiable functions,  spaces of countable type,  46S10,  26E30
@article{1197908909,
     author = {Schikhof, W.H.},
     title = {Ultrametric C<sup>n</sup>-Spaces of Countable Type},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 993-1000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1197908909}
}
Schikhof, W.H. Ultrametric Cn-Spaces of Countable Type. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  993-1000. http://gdmltest.u-ga.fr/item/1197908909/