Lattice-valued Borel measures. III.
Khurana, Surjit Singh
Archivum Mathematicum, Tome 044 (2008), p. 307-316 / Harvested from Czech Digital Mathematics Library

Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$ $(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.

Publié le : 2008-01-01
Classification:  28A33,  28B15,  28C05,  28C15,  46B42,  46G10
@article{119770,
     author = {Surjit Singh Khurana},
     title = {Lattice-valued Borel measures. III.},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {307-316},
     zbl = {1212.28009},
     mrnumber = {2493427},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119770}
}
Khurana, Surjit Singh. Lattice-valued Borel measures. III.. Archivum Mathematicum, Tome 044 (2008) pp. 307-316. http://gdmltest.u-ga.fr/item/119770/

Aliprantis, C. D.; Burkinshaw, O. Positive Operators, Academic Press, 1985. (1985) | MR 0809372 | Zbl 0608.47039

Diestel, J.; Uhl, J. J. Vector measures, Math. Surveys 15 (1977), 322. (1977) | MR 0453964 | Zbl 0369.46039

Kaplan, S. The second dual of the space of continuous function, Trans. Amer. Math. Soc. 86 (1957), 70–90. (1957) | Article | MR 0090774

Kaplan, S. The second dual of the space of continuous functions IV, Trans. Amer. Math. Soc. 113 (1964), 517–546. (1964) | Article | MR 0170205 | Zbl 0126.12002

Kawabe, J. The Portmanteau theorem for Dedekind complete Riesz space-valued measures, Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. (2004) | MR 2144038 | Zbl 1076.28004

Kawabe, J. Uniformity for weak order convergence of Riesz space-valued measures, Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. (2005) | Article | MR 2133410

Khurana, Surjit Singh Lattice-valued Borel Measures, Rocky Mountain J. Math. 6 (1976), 377–382. (1976) | Article | MR 0399409

Khurana, Surjit Singh Lattice-valued Borel Measures II, Trans. Amer. Math. Soc. 235 (1978), 205–211. (1978) | Article | MR 0460590 | Zbl 0325.28012

Khurana, Surjit Singh Vector measures on topological spaces, Georgian Math. J. 14 (2007), 687–698. (2007) | MR 2389030 | Zbl 1154.46025

Kluvanek, I.; Knowles, G. Vector measures and Control Systems, North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. (1975) | MR 0499068

Lewis, D. R. Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165. (1970) | Article | MR 0259064 | Zbl 0195.14303

Lipecki, Z. Riesz representation representation theorems for positive operators, Math. Nachr. 131 (1987), 351–356. (1987) | Article | MR 0908823

Meyer-Nieberg, P. Banach Lattices and positive operators, Springer-Verlag, 1991. (1991) | MR 1128093

Schaefer, H. H. Banach Lattices and Positive Operators, Springer-Verlag, 1974. (1974) | MR 0423039 | Zbl 0296.47023

Schaefer, H. H. Topological Vector Spaces, Springer-Verlag, 1986. (1986) | MR 0342978

Schaefer, H. H.; Zhang, Xaio-Dong A note on order-bounded vector measures, Arch. Math. (Basel) 63 (2) (1994), 152–157. (1994) | Article | MR 1289297

Schmidt, K. D. On the Jordan decomposition for vector measures. Probability in Banach spaces, IV, (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. (1983) | MR 0707518

Schmidt, K. D. Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. (1986) | MR 0829177 | Zbl 0569.28011

Varadarajan, V. S. Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220. (1965)

Wheeler, R. F. Survey of Baire measures and strict topologies, Exposition. Math. 2 (1983), 97–190. (1983) | MR 0710569 | Zbl 0522.28009

Wright, J. D. M. Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107–122. (1969) | MR 0240276 | Zbl 0186.46504

Wright, J. D. M. The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. (1971) | Article | MR 0330411 | Zbl 0215.48101

Wright, J. D. M. Vector lattice measures on locally compact spaces, Math. Z. 120 (1971), 193–203. (1971) | Article | MR 0293373 | Zbl 0198.47803

Wright, J. D. M. Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25 (1972), 675–688. (1972) | MR 0344413

Wright, J. D. M. An algebraic characterization of vector lattices with Borel regularity property, J. London Math. Soc. 7 (1973), 277–285. (1973) | Article | MR 0333116