Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
Saddeek, A. M. ; Ahmed, Sayed A.
Archivum Mathematicum, Tome 044 (2008), p. 285-293 / Harvested from Czech Digital Mathematics Library

The weak convergence of the iterative generated by $J(u_{n+1}-u_{n})= \tau (Fu_{n}-Ju_{n})$, $n \ge 0$, $\big (0< \tau =\min \big \lbrace 1,\frac{1}{\lambda }\big \rbrace \big )$ to a coincidence point of the mappings $F,J\colon V \rightarrow V^{\star }$ is investigated, where $V$ is a real reflexive Banach space and $V^{\star }$ its dual (assuming that $V^{\star }$ is strictly convex). The basic assumptions are that $J$ is the duality mapping, $J-F$ is demiclosed at $0$, coercive, potential and bounded and that there exists a non-negative real valued function $r(u,\eta )$ such that \[ \sup _{u,\eta \in V} \lbrace r(u,\eta )\rbrace =\lambda < \infty \] \[ r(u,\eta )\Vert J(u- \eta ) \Vert _{V^{\star }}\ge \Vert (J -F)(u)-(J-F)(\eta ) \Vert _{V^{\star }}\,, \quad \forall ~ u,\eta \in V\,. \] Furthermore, the case when $V$ is a Hilbert space is given. An application of our results to filtration problems with limit gradient in a domain with semipermeable boundary is also provided.

Publié le : 2008-01-01
Classification:  47H10,  54H25
@article{119768,
     author = {A. M. Saddeek and Sayed A. Ahmed},
     title = {Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {285-293},
     zbl = {1212.47088},
     mrnumber = {2493425},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119768}
}
Saddeek, A. M.; Ahmed, Sayed A. Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces. Archivum Mathematicum, Tome 044 (2008) pp. 285-293. http://gdmltest.u-ga.fr/item/119768/

Badriev, I. B.; Karchevskii, M. M. On the convergance of the iterative process in Banach spaces, Issledovaniya po prikladnoi matematike (Investigations in Applied Mathematics) 17 (1990), 3–15, in Russian. (1990) | MR 1127806

Brezis, H.; Nirenberg, L.; Stampacchia, G. A remark on Ky Fan’s minimax principle, Boll. Un. Mat. Ital. 6 (1972), 293–300. (1972) | MR 0324498 | Zbl 0264.49013

Gajewski, H.; Gröger, K.; Zacharias, K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie Verlag Berlin, 1974. (1974) | MR 0636412

Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge Stud. Adv. Math. 28 (1990). (1990) | MR 1074005 | Zbl 0708.47031

Istratescu, V.I. Fixed Point Theory, Reidel, Dordrecht, 1981. (1981) | MR 0620639 | Zbl 0465.47035

Karchevskii, M. M.; Badriev, I. B. Nonlinear problems of filtration theory with dis continuous monotone operators, Chislennye Metody Mekh. Sploshnoi Sredy 10 (5) (1979), 63–78, in Russian. (1979) | MR 0628672

Lions, J. L. Quelques Methods de Resolution des Problemes aux Limites Nonlineaires, Dunod and Gauthier-Villars, 1969. (1969) | MR 0259693

Lyashko, A. D.; Karchevskii, M. M. On the solution of some nonlinear problems of filtration theory, Izv. Vyssh. Uchebn. Zaved., Matematika 6 (1975), 73–81, in Russian. (1975)

Mann, W. R. Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) | Article | MR 0054846 | Zbl 0050.11603

Maruster, S. The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc. 63 (1) (1977), 69–73. (1977) | MR 0636944 | Zbl 0355.47037

Zeidler, E. Nonlinear Functional Analysis and Its Applications, Nonlinear Monotone Operators, vol. II(B), Springer Verlag, Berlin, 1990. (1990) | Zbl 0684.47029