A new class of spaces which contains the class of all normal spaces is defined and its characterization and properties are discussed.
@article{119766, author = {V. Renuka Devi and D. Sivaraj}, title = {A generalization of normal spaces}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {265-270}, zbl = {1212.54073}, mrnumber = {2493423}, language = {en}, url = {http://dml.mathdoc.fr/item/119766} }
Renuka Devi, V.; Sivaraj, D. A generalization of normal spaces. Archivum Mathematicum, Tome 044 (2008) pp. 265-270. http://gdmltest.u-ga.fr/item/119766/
Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), 849–861. (1990) | MR 1086708
On weaker forms of paracompactness, countable compactness and Lindelofness, Ann. New York Acad. Sci. 728 (1994), 41–49. (1994) | Article | MR 1467761
New Topologies from old via ideals, Amer. Math. Monthly 97 (4) (1990), 295 – 310. (1990) | Article | MR 1048441
Topology, Vol. I, Academic Press, New York, 1966. (1966) | MR 0217751 | Zbl 0158.40901
Topologies which are compact modulo an ideal, Ph.D. thesis, University of Cal. at Santa Barbara, 1967. (1967)
Codense and Completely codense ideals, Acta Math. Hungar. 108 (3) (2005), 197–205. (2005) | MR 2162560
Counterexamples in Topology, Springer-Verlag, New York, 1978. (1978) | MR 0507446 | Zbl 0386.54001
The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51–61. (1945) | MR 0010961
Set Topology, Chelsea Publishing Company, 1946. (1946) | MR 0115151
Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies, Ph.D. thesis, Univ. of Pittsburgh, 1981. (1981)