A generalization of normal spaces
Renuka Devi, V. ; Sivaraj, D.
Archivum Mathematicum, Tome 044 (2008), p. 265-270 / Harvested from Czech Digital Mathematics Library

A new class of spaces which contains the class of all normal spaces is defined and its characterization and properties are discussed.

Publié le : 2008-01-01
Classification:  54C10,  54D15
@article{119766,
     author = {V. Renuka Devi and D. Sivaraj},
     title = {A generalization of normal spaces},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {265-270},
     zbl = {1212.54073},
     mrnumber = {2493423},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119766}
}
Renuka Devi, V.; Sivaraj, D. A generalization of normal spaces. Archivum Mathematicum, Tome 044 (2008) pp. 265-270. http://gdmltest.u-ga.fr/item/119766/

Hamlett, T. R.; Jancović, D. Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), 849–861. (1990) | MR 1086708

Hamlett, T. R.; Jancović, D. On weaker forms of paracompactness, countable compactness and Lindelofness, Ann. New York Acad. Sci. 728 (1994), 41–49. (1994) | Article | MR 1467761

Jancović, D.; Hamlett, T. R. New Topologies from old via ideals, Amer. Math. Monthly 97 (4) (1990), 295 – 310. (1990) | Article | MR 1048441

Kuratowski, K. Topology, Vol. I, Academic Press, New York, 1966. (1966) | MR 0217751 | Zbl 0158.40901

Newcomb, R. L. Topologies which are compact modulo an ideal, Ph.D. thesis, University of Cal. at Santa Barbara, 1967. (1967)

Renukadevi, V.; Sivaraj, D.; Tamizh Chelvam, T. Codense and Completely codense ideals, Acta Math. Hungar. 108 (3) (2005), 197–205. (2005) | MR 2162560

Steen, L. A.; Seebach, J. A. Counterexamples in Topology, Springer-Verlag, New York, 1978. (1978) | MR 0507446 | Zbl 0386.54001

Vaidyanathaswamy, R. The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51–61. (1945) | MR 0010961

Vaidyanathaswamy, R. Set Topology, Chelsea Publishing Company, 1946. (1946) | MR 0115151

Zahid, M. I. Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies, Ph.D. thesis, Univ. of Pittsburgh, 1981. (1981)