We prove that pure subgroups of thick Abelian $p$-groups which are modulo countable are again thick. This generalizes a result due to Megibben (Michigan Math. J. 1966). Some related results are also established.
@article{119764, author = {Peter Vassilev Danchev and Patrick Keef}, title = {A note on a theorem of Megibben}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {245-249}, zbl = {1204.20070}, mrnumber = {2462980}, language = {en}, url = {http://dml.mathdoc.fr/item/119764} }
Danchev, Peter Vassilev; Keef, Patrick. A note on a theorem of Megibben. Archivum Mathematicum, Tome 044 (2008) pp. 245-249. http://gdmltest.u-ga.fr/item/119764/
Thick groups and essentially finitely indecomposable groups, Canad. J. Math. 30 (3) (1978), 650–654. (1978) | Article | MR 0492006 | Zbl 0399.20049
Commutative group algebras of thick abelian $p$-groups, Indian J. Pure Appl. Math. 36 (6) (2005), 319–328. (2005) | MR 2178344 | Zbl 1088.20001
Generalized Dieudonné and Hill criteria, Portugal. Math. 65 (1) (2008), 121–142. (2008) | Article | MR 2387091 | Zbl 1146.20034
Generalized Wallace theorems, Math. Scand., to appear. | MR 2498370
Primary abelian groups admitting only small homomorphisms, Commun. Algebra 23 (10) (1995), 3615–3626. (1995) | Article | MR 1348253 | Zbl 0835.20072
Large subgroups and small homomorphisms, Michigan Math. J. 13 (2) (1966), 153–160. (1966) | Article | MR 0195939 | Zbl 0166.02502
Homology and direct sums of countable abelian groups, Math. Z. 101 (3) (1967), 182–212. (1967) | Article | MR 0218452 | Zbl 0173.02401
Homomorphisms of Primary Abelian Groups, Topics in Abelian Groups, (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Illinois, 1963, pp. 215–310. (1963) | MR 0177035
On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra 17 (4) (1971), 482–488. (1971) | Article | MR 0272891 | Zbl 0215.39902