A new approach for describing instantaneous line congruence
Abdel-Baky, Rashad A. ; Al-Bokhary, Ashwaq J.
Archivum Mathematicum, Tome 044 (2008), p. 223-236 / Harvested from Czech Digital Mathematics Library

Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.

Publié le : 2008-01-01
Classification:  53A04,  53A05,  53A17
@article{119762,
     author = {Rashad A. Abdel-Baky and Ashwaq J. Al-Bokhary},
     title = {A new approach for describing instantaneous line congruence},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {223-236},
     zbl = {1212.53001},
     mrnumber = {2462978},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119762}
}
Abdel-Baky, Rashad A.; Al-Bokhary, Ashwaq J. A new approach for describing instantaneous line congruence. Archivum Mathematicum, Tome 044 (2008) pp. 223-236. http://gdmltest.u-ga.fr/item/119762/

Abdel-Baky, R. A. On the congruences of the tangents to a surface, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. (1999) | MR 1908813 | Zbl 1017.53003

Abdel-Baky, R. A. On instantaneous rectilinear congruences, J. Geom. Graph. 7 (2) (2003), 129–135. (2003) | MR 2071274 | Zbl 1066.53036

Abdel Baky, R. A. Inflection and torsion line congruences, J. Geom. Graph. 11 (1) (2004), 1–14. (2004) | MR 2364050

Abdel-Baky, R. A. On a line congruence which has the parameter ruled surfaces as principal ruled surfaces, Appl. Math. Comput. 151 (2004), 849–862. (2004) | Article | MR 2052463 | Zbl 1058.53010

Blaschke, W. Vorlesungen über Differential Geometrie, Dover Publications, New York, 1945. (1945) | MR 0015247

Bottema, O.; Roth, B. Theoretical Kinematics, North-Holland Press, New York, 1979. (1979) | MR 0533960 | Zbl 0405.70001

Clifford, W. K. Preliminary Sketch of bi-quaternions, Proc. London Math. Soc. 4 (64, 65) (1873), 361–395. (1873)

Eisenhart, L. P. A Treatise in Differential Geometry of Curves and Surfaces, New York, Ginn Camp., 1969. (1969)

Gugenheimer, H. W. Differential Geometry, Graw-Hill, New York, 1956. (1956)

Gursy, O. The dual angle of pitch of a closed ruled surface, Mech. Mach. Theory 25 (47) (1990), 131–140. (1990) | Article

Hlavaty, V. Differential Line Geometry, Groningen, P. Noordhoff Ltd. X, 1953. (1953) | MR 0057592 | Zbl 0051.39101

Hoschek, J. Liniengeometrie, B.I. Hochschultaschenbuch, Mannheim, 1971. (1971) | MR 0353164 | Zbl 0227.53007

Karger, A.; Novak, J. Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985. (1985) | MR 0801394

Koch, R. Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$, Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). (1981) | MR 0629825

Kose, Ö. Contributions to the theory of integral invariants of a closed ruled surface, Mech. Mach. Theory 32 (2) (1997), 261–277. (1997) | Article

Mc-Carthy, J. M. On the scalar and dual formulations of curvature theory of line trajectories, ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. (1987) | Article

Muller, H. R. Kinematik Dersleri, Ankara University Press, 1963. (1963) | MR 0157519

Schaaf, J. A. Curvature theory of line trajectories in spatial kinematics, Doctoral dissertation, University of California, Davis (1988). (1988) | MR 2636385

Schaaf, J. A. Geometric continuity of ruled surfaces, Comput. Aided Geom. Design 15 (1998), 289–310. (1998) | Article | MR 1614079 | Zbl 0903.68192

Stachel, H. Instantaneous spatial kinematics and the invariants of the axodes, Tech. report, Institute für Geometrie, TU Wien 34, 1996. (1996)

Veldkamp, G. R. On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics, Mech. Mach. Theory 11 (1976), 141–156. (1976) | Article

Weatherburn, M. A. Differential Geometry of Three Dimensions, Cambridge University Press, 1, 1969. (1969)

Yang, A. T. Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, Doctoral dissertation, Columbia (1967). (1967)