A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$ $\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.
@article{119757, author = {Zhongkui Liu and Xiao Yan Yang}, title = {Left APP-property of formal power series rings}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {185-189}, zbl = {1203.16031}, mrnumber = {2462973}, language = {en}, url = {http://dml.mathdoc.fr/item/119757} }
Liu, Zhongkui; Yang, Xiao Yan. Left APP-property of formal power series rings. Archivum Mathematicum, Tome 044 (2008) pp. 185-189. http://gdmltest.u-ga.fr/item/119757/
A sheaf representation of quasi-Baer rings, J. Pure Appl. Algebra 146 (2000), 209–223. (2000) | Article | MR 1742340 | Zbl 0947.16018
On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–254. (2000) | MR 1803098 | Zbl 0987.16017
On quasi-Baer rings, Contemp. Math. 259 (2000), 67–92. (2000) | Article | MR 1778495 | Zbl 0974.16006
Principally quasi-Baer rings, Comm. Algebra 29 (2001), 639–660. (2001) | Article | MR 1841988 | Zbl 0991.16005
Reduced PP-rings, Math. Japon. 34 (1989), 715–725. (1989) | MR 1022149 | Zbl 0688.16024
On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), 45–52. (2002) | Article | MR 1879930 | Zbl 1007.16020
A note on principally quasi-Baer rings, Comm. Algebra 30 (2002), 3885–3890. (2002) | Article | MR 1922317 | Zbl 1018.16023
PP-rings of generalized power series, Acta Math. Sinica 16 (2000), 573–578, English Series. (2000) | MR 1813453 | Zbl 1015.16046
A generalization of PP-rings and p.q.-Baer rings, Glasgow Math. J. 48 (2006), 217–229. (2006) | Article | MR 2256973 | Zbl 1110.16003
Rings of Quotients, Springer-Verlag, Berlin, 1975. (1975) | MR 0389953
On $s$-unital rings, Math. J. Okayama Univ. 18 (1976), 117–134. (1976) | MR 0419511 | Zbl 0335.16020