Semistable conjecture via $K$ -theory
Nizioł, Wiesława
Duke Math. J., Tome 141 (2008) no. 1, p. 151-178 / Harvested from Project Euclid
We show that the semistable conjecture of Fontaine and Jannsen (see [9]) is true for proper, vertical, fine, and saturated log-smooth families with reduction of Cartier type (e.g., proper schemes with simple semistable reduction). We derive it from Suslin's comparison theorem [31, Corollary 4.3] between motivic cohomology and étale cohomology. This gives a new proof of the semistable conjecture showing motivic character of p-adic period maps
Publié le : 2008-01-15
Classification:  14F42,  14F20,  11G25
@article{1196794293,
     author = {Nizio\l , Wies\l awa},
     title = {Semistable conjecture via $K$ -theory},
     journal = {Duke Math. J.},
     volume = {141},
     number = {1},
     year = {2008},
     pages = { 151-178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1196794293}
}
Nizioł, Wiesława. Semistable conjecture via $K$ -theory. Duke Math. J., Tome 141 (2008) no. 1, pp.  151-178. http://gdmltest.u-ga.fr/item/1196794293/