Rates of convergence of a transient diffusion in a spectrally negative Lévy potential
Singh, Arvind
Ann. Probab., Tome 36 (2008) no. 1, p. 279-318 / Harvested from Project Euclid
We consider a diffusion process X in a random Lévy potential $\mathbb{V}$ which is a solution of the informal stochastic differential equation ¶ \begin{eqnarray*}\cases{dX_{t}=d\beta_{t}-\frac{1}{2}\mathbb{V}'(X_{t})\,dt,\cr X_{0}=0,}\end{eqnarray*} ¶ (β B. M. independent of $\mathbb{V}$ ). We study the rate of convergence when the diffusion is transient under the assumption that the Lévy process $\mathbb{V}$ does not possess positive jumps. We generalize the previous results of Hu–Shi–Yor for drifted Brownian potentials. In particular, we prove a conjecture of Carmona: provided that there exists 0<κ<1 such that $\mathbf{E}[e^{\kappa\mathbb{V}_{1}}]=1$ , then Xt/tκ converges to some nondegenerate distribution. These results are in a way analogous to those obtained by Kesten–Kozlov–Spitzer for the transient random walk in a random environment.
Publié le : 2008-01-14
Classification:  Diffusion with random potential,  rates of convergence,  Lévy process with no positive jumps,  generalized Ornstein–Uhlenbeck process,  60J60,  60J55
@article{1196268680,
     author = {Singh, Arvind},
     title = {Rates of convergence of a transient diffusion in a spectrally negative L\'evy potential},
     journal = {Ann. Probab.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 279-318},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1196268680}
}
Singh, Arvind. Rates of convergence of a transient diffusion in a spectrally negative Lévy potential. Ann. Probab., Tome 36 (2008) no. 1, pp.  279-318. http://gdmltest.u-ga.fr/item/1196268680/