Let $X$ and $Y$ be linear spaces. It is shown that
for a fixed positive integer $n\geq2,$ if a mapping $Q:X\to Y$
satisfies the following functional equation
\begin{equation}\label{A}
\sum_{i=1}^{n}Q(z-x_{i})=\frac{1}{n}\sum_{\substack{1\le i,j\le n\\
j
Publié le : 2007-11-14
Classification:
Apollonius' identity,
$n$-Apollonius' identity,
Hyers-Ulam stability,
Quadratic function,
Quadratic functional equation of Apollonius type,
Quadratic functional equation of $n$-Apollonius type,
39B22,
39B52
@article{1195157142,
author = {Najati, Abbas},
title = {Hyers-Ulam Stability of an $n$-Apollonius
type Quadratic Mapping},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {13},
number = {5},
year = {2007},
pages = { 755-774},
language = {en},
url = {http://dml.mathdoc.fr/item/1195157142}
}
Najati, Abbas. Hyers-Ulam Stability of an $n$-Apollonius
type Quadratic Mapping. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp. 755-774. http://gdmltest.u-ga.fr/item/1195157142/