Hyers-Ulam Stability of an $n$-Apollonius type Quadratic Mapping
Najati, Abbas
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 755-774 / Harvested from Project Euclid
Let $X$ and $Y$ be linear spaces. It is shown that for a fixed positive integer $n\geq2,$ if a mapping $Q:X\to Y$ satisfies the following functional equation \begin{equation}\label{A} \sum_{i=1}^{n}Q(z-x_{i})=\frac{1}{n}\sum_{\substack{1\le i,j\le n\\ j
Publié le : 2007-11-14
Classification:  Apollonius' identity,  $n$-Apollonius' identity,  Hyers-Ulam stability,  Quadratic function,  Quadratic functional equation of Apollonius type,  Quadratic functional equation of $n$-Apollonius type,  39B22,  39B52
@article{1195157142,
     author = {Najati, Abbas},
     title = {Hyers-Ulam Stability of an $n$-Apollonius
type Quadratic Mapping},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 755-774},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1195157142}
}
Najati, Abbas. Hyers-Ulam Stability of an $n$-Apollonius
type Quadratic Mapping. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  755-774. http://gdmltest.u-ga.fr/item/1195157142/