Inner invariant extensions of Dirac measures on compactly cancellative topological semigroups
Bami, M. Lashkarizadeh ; Mohammadzadeh, B. ; Nasr-Isfahani, R.
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 699-708 / Harvested from Project Euclid
Let ${\cal S}$ be a left compactly cancellative foundation semigroup with identity $e$ and $M_a({\cal S})$ be its semigroup algebra. In this paper, we give a characterization for the existence of an inner invariant extension of $\delta_e$ from $C_b({\cal S})$ to a mean on $L^\infty({\cal S},M_a({\cal S}))$ in terms of asymptotically central bounded approximate identities in $M_a({\cal S})$. We also consider topological inner invariant means on $L^\infty({\cal S},M_a({\cal S}))$ to study strict inner amenability of $M_a({\cal S})$ and their relation with strict inner amenability of ${\cal S}$.
Publié le : 2007-11-14
Classification:  Inner invariance,  inner invariant extension,  mixed identity,  strict inner amenability,  topological inner invariance,  43A07,  43A10,  43A15,  46H05
@article{1195157138,
     author = {Bami, M. Lashkarizadeh and Mohammadzadeh, B. and Nasr-Isfahani, R.},
     title = {Inner invariant extensions of Dirac measures
 on compactly cancellative topological semigroups},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 699-708},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1195157138}
}
Bami, M. Lashkarizadeh; Mohammadzadeh, B.; Nasr-Isfahani, R. Inner invariant extensions of Dirac measures
 on compactly cancellative topological semigroups. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  699-708. http://gdmltest.u-ga.fr/item/1195157138/