Achievement of continuity of $(\varphi,\psi)$-derivations without linearity
Hejazian, S. ; Janfada, A. R. ; Mirzavaziri, M. ; Moslehian, M. S.
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 641-652 / Harvested from Project Euclid
Suppose that $\frak A$ is a $C^*$-algebra acting on a Hilbert space $\frak K$, and $\varphi, \psi$ are mappings from $\frak A$ into $B(\frak K)$ which are not assumed to be necessarily linear or continuous. A $(\varphi, \psi)$-derivation is a linear mapping $d: \frak A \to B(\frak K)$ such that $$d(ab)=\varphi(a)d(b)+d(a)\psi(b)\quad (a,b\in \frak A).$$ We prove that if $\varphi$ is a multiplicative (not necessarily linear)\ $*$-mapping, then every $*$-$(\varphi,\varphi)$-derivation is automatically continuous. Using this fact, we show that every $*$-$(\varphi,\psi)$-derivation $d$ from $\frak A$ into $B(\frak K)$ is continuous if and only if the $*$-mappings $\varphi$ and $\psi$ are left and right $d$-continuous, respectively.
Publié le : 2007-11-14
Classification:  Automatic continuity,  $d$-continuous,  $(\varphi,\psi)$-derivation,  $*$-mapping,  derivation,  $C^*$-algebra,  46L57,  46L05,  47B47
@article{1195157133,
     author = {Hejazian, S. and Janfada, A. R. and Mirzavaziri, M. and Moslehian, M. S.},
     title = {Achievement of continuity of $(\varphi,\psi)$-derivations without linearity},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 641-652},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1195157133}
}
Hejazian, S.; Janfada, A. R.; Mirzavaziri, M.; Moslehian, M. S. Achievement of continuity of $(\varphi,\psi)$-derivations without linearity. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  641-652. http://gdmltest.u-ga.fr/item/1195157133/