Let $g:B\to \mathbb C^1$ be a holomorphic map of the unit ball $B$. We study the integral operators $$
T_gf(z)=\int_0^1f(tz)\Re g(tz)\frac{dt}{t}; \ \ L_gf(z)= \int_0^1
\Re f(tz) g(tz)\frac{dt}{t},\qquad z\in B. $$
The boundedness and compactness of the operators $T_g$ and $L_g$ on the Hardy space $H^2$ in the unit ball are discussed
in this paper.
@article{1195157131,
author = {Li, Songxiao and Stevi\'c, Stevo},
title = {Riemann-Stieltjes operators on Hardy spaces in the unit ball of $\mathbb C^n$},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {13},
number = {5},
year = {2007},
pages = { 621-628},
language = {en},
url = {http://dml.mathdoc.fr/item/1195157131}
}
Li, Songxiao; Stević, Stevo. Riemann-Stieltjes operators on Hardy spaces in the unit ball of $\mathbb C^n$. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp. 621-628. http://gdmltest.u-ga.fr/item/1195157131/