Symmetry of steady periodic gravity water waves with vorticity
Constantin, Adrian ; Ehrnström, Mats ; Wahlén, Erik
Duke Math. J., Tome 136 (2007) no. 1, p. 591-603 / Harvested from Project Euclid
We prove that steady periodic two-dimensional rotational gravity water waves with a monotone surface profile between troughs and crests have to be symmetric about the crest, irrespective of the vorticity distribution within the fluid
Publié le : 2007-12-01
Classification:  35Q35,  35J25,  35J60,  76B15
@article{1194547698,
     author = {Constantin, Adrian and Ehrnstr\"om, Mats and Wahl\'en, Erik},
     title = {Symmetry of steady periodic gravity water waves with vorticity},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 591-603},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1194547698}
}
Constantin, Adrian; Ehrnström, Mats; Wahlén, Erik. Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J., Tome 136 (2007) no. 1, pp.  591-603. http://gdmltest.u-ga.fr/item/1194547698/