We show that the small cardinal number $i = \min \{\vert \Cal A \vert : \Cal A$ is a maximal independent family\} has the following topological characterization: $i = \min \{\kappa \leq c: \{0,1\}^{\kappa}$ has a dense irresolvable countable subspace\}, where $\{0,1\}^{\kappa}$ denotes the Cantor cube of weight $\kappa$. As a consequence of this result, we have that the Cantor cube of weight $c$ has a dense countable submaximal subspace, if we assume (ZFC plus $i=c$), or if we work in the Bell-Kunen model, where $i = {\aleph_{1}}$ and $c = {\aleph_{\omega_1}}$.
@article{119429, author = {Antonio de Padua Franco-Filho}, title = {Topological characterization of the small cardinal $i$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {745-750}, zbl = {1098.54003}, mrnumber = {2062891}, language = {en}, url = {http://dml.mathdoc.fr/item/119429} }
Franco-Filho, Antonio de Padua. Topological characterization of the small cardinal $i$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 745-750. http://gdmltest.u-ga.fr/item/119429/
Irresolvable and submaximal spaces: homogeneity vs ${\sigma}$-discreteness and new ZFC examples, Topology Appl. 107 (2000), 259-278. (2000) | MR 1779814
On the Pi-character of ultrafilters, C.R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. (1981) | MR 0642449 | Zbl 0475.54001
Irresolvable countable spaces of weight less than $\frak c$, Comment. Math. Univ. Carolinae 40.1 (1999), 181-185. (1999) | MR 1715211 | Zbl 1060.54500