Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\bf F}_p$ where $p\equiv 1\pmod6$ is Prime
Demirci, Musa ; Soydan, Gokhan ; Cangul, Ismail Naci
Rocky Mountain J. Math., Tome 37 (2007) no. 2, p. 1483-1491 / Harvested from Project Euclid
Publié le : 2007-10-15
Classification:  Elliptic curves over finite fields,  rational points,  11G20,  14H25,  14K15,  14G99
@article{1194275930,
     author = {Demirci, Musa and Soydan, Gokhan and Cangul, Ismail Naci},
     title = {Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\bf F}\_p$ where $p\equiv 1\pmod6$ is Prime},
     journal = {Rocky Mountain J. Math.},
     volume = {37},
     number = {2},
     year = {2007},
     pages = { 1483-1491},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1194275930}
}
Demirci, Musa; Soydan, Gokhan; Cangul, Ismail Naci. Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\bf F}_p$ where $p\equiv 1\pmod6$ is Prime. Rocky Mountain J. Math., Tome 37 (2007) no. 2, pp.  1483-1491. http://gdmltest.u-ga.fr/item/1194275930/