Answering an open problem in [3] we show that for an even number $k$, there exist no $k$ to $1$ mappings on the dyadic solenoid.
@article{119424, author = {Jan M. Aarts and Robbert J. Fokkink}, title = {Mappings on the dyadic solenoid}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {697-699}, zbl = {1099.22005}, mrnumber = {2062886}, language = {en}, url = {http://dml.mathdoc.fr/item/119424} }
Aarts, Jan M.; Fokkink, Robbert J. Mappings on the dyadic solenoid. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 697-699. http://gdmltest.u-ga.fr/item/119424/
The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. (1988) | MR 0954894 | Zbl 0664.54026
The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163. (1991) | MR 1042260 | Zbl 0768.54026
On covering mappings on solenoids, Proc. Amer. Math. Soc. 130 (2002), 2145-2154. (2002) | MR 1896052 | Zbl 0989.54038
Abstract Harmonic Analysis, Vol. I, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. | MR 0156915 | Zbl 0837.43002
Means on solenoids, Proc. Amer. Math. Soc. 131 (2003), 1925-1929. (2003) | MR 1955283 | Zbl 1029.54041
Maps between topological groups that are homotopic to homomorphisms, Proc. Amer. Math. Soc. 33 (1972), 562-567. (1972) | MR 0301130 | Zbl 0236.22008
Covering mappings on solenoids and their dynamical properties, Chinese Sci. Bull. 45 (2000), 1066-1070. (2000) | MR 1777211