Non-existence of some canonical constructions on connections
Mikulski, Włodzimierz M.
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 691-695 / Harvested from Czech Digital Mathematics Library

For a vector bundle functor $H:\Cal M f\to \Cal V\Cal B$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\Cal F\Cal M_{m,n}$-natural operator $D$ transforming connections $\Gamma$ on $(m,n)$-dimensional fibered manifolds $p:Y\to M$ into connections $D(\Gamma)$ on $Hp:HY\to HM$. For a bundle functor $E:\Cal F\Cal M_{m,n}\to \Cal F\Cal M$ with some weak conditions we prove non-existence of $\Cal F\Cal M_{m,n}$-natural operators $D$ transforming connections $\Gamma$ on $(m,n)$-dimensional fibered manifolds $Y\to M$ into connections $D(\Gamma)$ on $EY\to M$.

Publié le : 2003-01-01
Classification:  53C05,  58A20,  58A32
@article{119423,
     author = {W\l odzimierz M. Mikulski},
     title = {Non-existence of some canonical constructions on connections},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {691-695},
     zbl = {1099.58004},
     mrnumber = {2062885},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119423}
}
Mikulski, Włodzimierz M. Non-existence of some canonical constructions on connections. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 691-695. http://gdmltest.u-ga.fr/item/119423/

Doupovec M.; Mikulski W.M Horizontal extension of connections into $(2)$-connections, to appear. | MR 2103898

Kolář I. On generalized connections, Beiträge Algebra Geom. 11 (1981), 29-34. (1981) | MR 0680454

Kolář I.; Michor P.W.; Slovák J. Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. | MR 1202431

Kolář I.; Mikulski W.M. Natural lifting of connections to vertical bundles, Suppl. Rend. Circolo Math. Palermo II 63 (2000), 97-102. (2000) | MR 1758084

Mikulski W.M. Non-existence of a connection on $FY\to Y$ canonically dependent on a connection on $Y\to M$, Arch. Math. Brno, to appear. | MR 2142138

Slovák J. Prolongations of connections and sprays with respect to Weil functors, Suppl. Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143-155. (1987) | MR 0920852