Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\Cal F \subset S(X)$ such that its complement $S(X) \setminus \Cal F$ is $\sigma$-porous and such that for each $A\in \Cal F$ and each $\tilde x\in D$, the set of solutions of the best approximation problem $\|\tilde x-z\| \to \min$, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence.
@article{119422, author = {Simeon Reich and Alexander J. Zaslavski}, title = {Best approximations and porous sets}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {681-689}, zbl = {1096.41022}, mrnumber = {2062884}, language = {en}, url = {http://dml.mathdoc.fr/item/119422} }
Reich, Simeon; Zaslavski, Alexander J. Best approximations and porous sets. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 681-689. http://gdmltest.u-ga.fr/item/119422/
Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Providence, RI (2000). (2000) | MR 1727673 | Zbl 0946.46002
On porous sets and best approximation theory, preprint. | Zbl 1088.41015
On the minimum distance theorem to a closed convex set in a Banach space, Bull. Acad. Polon. Sci. 29 373-376 (1981). (1981) | MR 0640331 | Zbl 0515.41031
On almost well posed problems in the theory of best approximation, Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). (1984) | MR 0771542 | Zbl 0593.41026
Porous sets in best approximation theory, J. London Math. Soc. 44 135-142 (1991). (1991) | MR 1122975 | Zbl 0786.41027
About well-posed minimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 225-229 (1970). (1970)
How small are the sets where the metric projection fails to be continuous, Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). (1992) | MR 1287230
Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex Anal. 1 107-113 (2000). (2000) | MR 1751731 | Zbl 0984.37016
Well-posedness and porosity in best approximation problems, Topol. Methods Nonlinear Anal. 18 395-408 (2001). (2001) | MR 1911709 | Zbl 1005.41011
A porosity result in best approximation theory, J. Nonlinear Convex Anal. 4 165-173 (2003). (2003) | MR 1986978 | Zbl 1024.41017
On the Fréchet differentiability of distance functions, Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). (1984) | MR 0781948
Porosity and $\sigma$-porosity, Real Anal. Exchange 13 314-350 (1987). (1987) | MR 0943561
Small non-$\sigma$-porous sets in topologically complete metric spaces, Colloq. Math. 77 293-304 (1998). (1998) | MR 1628994
Well-posedness and porosity in optimal control without convexity assumptions, Calc. Var. 13 265-293 (2001). (2001) | MR 1864999 | Zbl 1032.49035