Best approximations and porous sets
Reich, Simeon ; Zaslavski, Alexander J.
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 681-689 / Harvested from Czech Digital Mathematics Library

Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\Cal F \subset S(X)$ such that its complement $S(X) \setminus \Cal F$ is $\sigma$-porous and such that for each $A\in \Cal F$ and each $\tilde x\in D$, the set of solutions of the best approximation problem $\|\tilde x-z\| \to \min$, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence.

Publié le : 2003-01-01
Classification:  41A50,  41A52,  41A65,  49K40,  54E35,  54E50,  54E52
@article{119422,
     author = {Simeon Reich and Alexander J. Zaslavski},
     title = {Best approximations and porous sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {681-689},
     zbl = {1096.41022},
     mrnumber = {2062884},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119422}
}
Reich, Simeon; Zaslavski, Alexander J. Best approximations and porous sets. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 681-689. http://gdmltest.u-ga.fr/item/119422/

Benyamini Y.; Lindenstrauss J. Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Providence, RI (2000). (2000) | MR 1727673 | Zbl 0946.46002

De Blasi F.S.; Georgiev P.G.; Myjak J. On porous sets and best approximation theory, preprint. | Zbl 1088.41015

De Blasi F.S.; Myjak J. On the minimum distance theorem to a closed convex set in a Banach space, Bull. Acad. Polon. Sci. 29 373-376 (1981). (1981) | MR 0640331 | Zbl 0515.41031

De Blasi F.S.; Myjak J. On almost well posed problems in the theory of best approximation, Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). (1984) | MR 0771542 | Zbl 0593.41026

De Blasi F.S.; Myjak J.; Papini P.L. Porous sets in best approximation theory, J. London Math. Soc. 44 135-142 (1991). (1991) | MR 1122975 | Zbl 0786.41027

Furi M.; Vignoli A. About well-posed minimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 225-229 (1970). (1970)

Matoušková E. How small are the sets where the metric projection fails to be continuous, Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). (1992) | MR 1287230

Reich S.; Zaslavski A.J. Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex Anal. 1 107-113 (2000). (2000) | MR 1751731 | Zbl 0984.37016

Reich S.; Zaslavski A.J. Well-posedness and porosity in best approximation problems, Topol. Methods Nonlinear Anal. 18 395-408 (2001). (2001) | MR 1911709 | Zbl 1005.41011

Reich S.; Zaslavski A.J. A porosity result in best approximation theory, J. Nonlinear Convex Anal. 4 165-173 (2003). (2003) | MR 1986978 | Zbl 1024.41017

L. Zajíček On the Fréchet differentiability of distance functions, Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). (1984) | MR 0781948

Zajíček L. Porosity and $\sigma$-porosity, Real Anal. Exchange 13 314-350 (1987). (1987) | MR 0943561

Zajíček L. Small non-$\sigma$-porous sets in topologically complete metric spaces, Colloq. Math. 77 293-304 (1998). (1998) | MR 1628994

Zaslavski A.J. Well-posedness and porosity in optimal control without convexity assumptions, Calc. Var. 13 265-293 (2001). (2001) | MR 1864999 | Zbl 1032.49035