In the present paper, we will show that the set of minimal elements of a full affine semigroup $A\hookrightarrow \Bbb N^k_0$ contains a free basis of the group generated by $A$ in $\Bbb Z^k$. This will be applied to the study of the group $\text{\rm K}_0(R)$ for a semilocal ring $R$.
@article{119416, author = {Pavel P\v r\'\i hoda}, title = {Bases of minimal elements of some partially ordered free abelian groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {623-628}, zbl = {1101.16010}, mrnumber = {2062878}, language = {en}, url = {http://dml.mathdoc.fr/item/119416} }
Příhoda, Pavel. Bases of minimal elements of some partially ordered free abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 623-628. http://gdmltest.u-ga.fr/item/119416/
Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1993. | MR 1251956 | Zbl 0909.13005
Module theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Mathematics 197, Birkhäuser, 1998. | MR 1634015 | Zbl 0930.16001
$K_0$ of a semilocal ring, J. Algebra 225 1 (2000), 47-69. (2000) | MR 1743650 | Zbl 0955.13006
Projective modules over semilocal rings, in: D.V. Huynh (ed.) et al., Algebra and its Applications: Proceedings of the International Conference, Contemp. Math. 259, 2000, 181-198. | MR 1778501 | Zbl 0981.16003
Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs no. 20, Amer. Math. Soc., 1986. | MR 0845783 | Zbl 0589.06008