Commutative group algebras of highly torsion-complete abelian $p$-groups
Danchev, Peter Vassilev
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 587-592 / Harvested from Czech Digital Mathematics Library

A new class of abelian $p$-groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).

Publié le : 2003-01-01
Classification:  16S34,  16U60,  20C07,  20K10,  20K27
@article{119413,
     author = {Peter Vassilev Danchev},
     title = {Commutative group algebras of highly torsion-complete abelian $p$-groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {587-592},
     zbl = {1101.20001},
     mrnumber = {2062875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119413}
}
Danchev, Peter Vassilev. Commutative group algebras of highly torsion-complete abelian $p$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 587-592. http://gdmltest.u-ga.fr/item/119413/

Culter D.O. Primary abelian groups having all high subgroups isomorphic, Proc. Amer. Math. Soc. (3) 83 (1981), 467-470. (1981) | MR 0627671

Culter D.O. High subgroups of primary abelian groups of length $ømega+n$, J. Algebra 83 (1983), 502-509. (1983) | MR 0714261

Danchev P.V. Normed unit groups and direct factor problem for commutative modular group algebras, Math. Balkanica (2-3) 10 (1996), 161-173. (1996) | MR 1606535 | Zbl 0980.16500

Danchev P.V. Isomorphism of commutative semisimple group algebras, Math. Balkanica (1-2) 11 (1997), 51-55. (1997) | MR 1606596 | Zbl 0939.16015

Danchev P.V. Isomorphism of modular group algebras of direct sums of torsion-complete abelian $p$-groups, Rend. Sem. Mat. Univ. Padova 101 (1999), 51-58. (1999) | MR 1705279 | Zbl 0959.20003

Danchev P.V. Commutative group algebras of cardinality $\aleph_1$, Southeast Asian Bull. Math. (4) 25 (2001), 589-598. (2001) | MR 1934659

Danchev P.V. Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups, Comment. Math. Univ. Carolinae 43 (2002), 419-428. (2002) | MR 1920518 | Zbl 1068.16042

Danchev P.V. Invariants for group algebras of abelian groups, Rend. Circolo Mat. Palermo (2) 51 (2002), 391-402. (2002) | MR 1947462 | Zbl 1097.20504

Danchev P.V. Isomorphism of commutative group algebras of closed $p$-groups and $p$-local algebraically compact groups, Proc. Amer. Math. Soc. 130 (2002), 1937-1941. (2002) | MR 1896025 | Zbl 0997.20007

Danchev P.V. Sylow $p$-subgroups of abelian group rings, Serdica Math. J. 29 (2003), 33-44. (2003) | MR 1981103 | Zbl 1035.16025

Danchev P.V. Isomorphic commutative group algebras of primary semi-complete abelian groups, to appear.

Danchev P.V. Torsion completeness of Sylow $p$-groups in semi-simple group rings, Acta Math. Sinica (2003). (2003)

Danchev P.V. Commutative group algebras of $p^{ømega+n}$-projective abelian groups, submitted. | Zbl 1111.20007

Danchev P.V. $S(RG)/G_p$ is a $\Sigma$-group, in press.

Fuchs L. Infinite Abelian Groups, I and II, Mir, Moscow, 1974 and 1977 (in Russian). | MR 0457533 | Zbl 0338.20063

Hill P.D. The equivalence of high subgroups, Proc. Amer. Math. Soc. 88 (1983), 207-211. (1983) | MR 0695242 | Zbl 0522.20038

Irwin J.M. High subgroups of abelian torsion groups, Pacific J. Math. 11 (1961), 1375-1384. (1961) | MR 0136654 | Zbl 0106.02303

Irwin J.M.; Cellars R.M.; Snabb T. A functorial generalization of Ulm's theorem, Comment. Math. Univ. St. Pauli 27 (1978), 155-177. (1978) | MR 0546205

Irwin J.M.; Richman F.; Walker E.A. Countable direct sums of torsion complete groups, Proc. Amer. Math. Soc. 17 (1966), 763-766. (1966) | MR 0197556 | Zbl 0143.04501

Irwin J.M.; Snabb T.; Cellars R.M. The torsion product of totally projective $p$-groups, Comment. Math. Univ. St. Pauli 29 (1980), 1-5. (1980) | MR 0586242 | Zbl 0441.20035

Mollov T.Zh. Sylow $p$-subgroups of the group of normed units of semisimple group algebras of uncountable abelian $p$-groups, Pliska Stud. Math. Bulgar. 8 (1986), 34-46 (in Russian). (1986) | MR 0866643