The limit lemma in fragments of arithmetic
Švejdar, Vítězslav
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 565-568 / Harvested from Czech Digital Mathematics Library

The recursion theoretic limit lemma, saying that each function with a $\varSigma_{n+2}$ graph is a limit of certain function with a $\varDelta_{n+1}$ graph, is provable in $\text{\rm B}\Sigma_{n+1}$.

Publié le : 2003-01-01
Classification:  03D20,  03D55,  03F30
@article{119409,
     author = {V\'\i t\v ezslav \v Svejdar},
     title = {The limit lemma in fragments of arithmetic},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {565-568},
     zbl = {1098.03067},
     mrnumber = {2025821},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119409}
}
Švejdar, Vítězslav. The limit lemma in fragments of arithmetic. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 565-568. http://gdmltest.u-ga.fr/item/119409/

Clote P. Partition relations in arithmetic, in C.A. DiPrisco, Ed., {Methods in Mathematical Logic}, Lecture Notes in Mathematics 1130, Springer, 1985, pp.32-68. | MR 0799036 | Zbl 0567.03029

Hájek P.; Kučera A. On recursion theory in $I{\Sigma_1}$, J. Symbolic Logic 54 (1989), 576-589. (1989) | MR 0997890

Hájek P.; Pudlák P. Metamathematics of First Order Arithmetic, Springer, 1993. | MR 1219738

Kučera A. An alternative, priority-free, solution to Post's problem, in J. Gruska, B. Rovan, and J. Wiedermann, Eds., {Mathematical Foundations of Computer Science 1986} (Bratislava, Czechoslovakia, August 25-29, 1986), Lecture Notes in Computer Science 233, Springer, 1986, pp.493-500. | MR 0874627 | Zbl 0615.03033

Rogers H., Jr. Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. | MR 0224462 | Zbl 0256.02015