On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets
Zajíček, Luděk ; Zelený, Miroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 531-554 / Harvested from Czech Digital Mathematics Library

Let $\bold P$ be a porosity-like relation on a separable locally compact metric space $E$. We show that the $\sigma$-ideal of compact $\sigma$-$\bold P$-porous subsets of $E$ (under some general conditions on $\bold P$ and $E$) forms a $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-complete set in the hyperspace of all compact subsets of $E$, in particular it is coanalytic and non-Borel. Our general results are applicable to most interesting types of porosity. It is shown in the cases of the $\sigma$-ideals of $\sigma$-porous sets, $\sigma$-$\langle g \rangle$-porous sets, $\sigma$-strongly porous sets, $\sigma$-symmetrically porous sets and $\sigma$-strongly symmetrically porous sets. We prove a similar result also for $\sigma$-very porous sets assuming that each singleton of $E$ is very porous set.

Publié le : 2003-01-01
Classification:  28A05,  54H05,  54H25
@article{119407,
     author = {Lud\v ek Zaj\'\i \v cek and Miroslav Zelen\'y},
     title = {On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {531-554},
     zbl = {1099.54029},
     mrnumber = {2025819},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119407}
}
Zajíček, Luděk; Zelený, Miroslav. On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 531-554. http://gdmltest.u-ga.fr/item/119407/

Debs G.; Preiss D. private communication, .

Debs G.; Saint-Raymond J. Ensemblesboréliens d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 3 217-239 (1987). (1987) | MR 0916281

Evans M.J.; Humke P.D. Contrasting symmetric porosity and porosity, J. Appl. Anal. 4 1 19-41 (1998). (1998) | MR 1648939 | Zbl 0922.26003

Foran J. Continuous functions need not have $\sigma$-porous graphs, Real Anal. Exchange 11 194-203 (1985-86). (1985-86) | MR 0828490 | Zbl 0607.26005

Kechris A.S. Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. | MR 1321597 | Zbl 0819.04002

Kechris A.S. On the concept of $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-completeness, Proc. Amer. Math. Soc. 125 6 1811-1814 (1997). (1997) | MR 1372034

Kechris A.S.; Louveau A. Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Notes Series 128, Cambridge University Press, Cambridge, 1989. | MR 0953784 | Zbl 0677.42009

Kechris A.S.; Louveau A.; Woodin W.H. The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. (1987) | MR 0879573 | Zbl 0633.03043

Michael E. Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. (1951) | MR 0042109 | Zbl 0043.37902

Zajíček L. Sets of $\sigma$-porosity and $\sigma$-porosity $(q)$, Časopis Pěst. Mat. 101 (1976), 350-359. (1976) | MR 0457731

Zajíček L. Porosity and $\sigma$-porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987-88) | MR 0943561

Zajíček L. Products of non-$\sigma$-porous sets and Foran systems, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 497-505. (1996) | MR 1428780

Zajíček L. Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces Czechoslovak Math. J., 41 (116) (1991), 288-296. (1991) | MR 1105445

Zamfirescu T. Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. (1987), 57-62. (1987) | MR 0875352 | Zbl 0607.52002

Zelený M. unpublished manuscript, .

Zelený M.; Pelant J. The structure of the $\sigma$-ideal of $\sigma$-porous sets, submitted, available electronically under http://www.karlin.mff.cuni.cz/kma-preprints/. | MR 2076859