Open maps do not preserve Whyburn property
Obersnel, Franco
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 525-530 / Harvested from Czech Digital Mathematics Library

We show that a (weakly) Whyburn space $X$ may be mapped continuously via an open map $f$ onto a non (weakly) Whyburn space $Y$. This fact may happen even between topological groups $X$ and $Y$, $f$ a homomorphism, $X$ Whyburn and $Y$ not even weakly Whyburn.

Publié le : 2003-01-01
Classification:  54A20,  54C10,  54D55
@article{119406,
     author = {Franco Obersnel},
     title = {Open maps do not preserve Whyburn property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {525-530},
     zbl = {1098.54008},
     mrnumber = {2025818},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119406}
}
Obersnel, Franco. Open maps do not preserve Whyburn property. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 525-530. http://gdmltest.u-ga.fr/item/119406/

Dimov G.D.; Isler R.; Tironi G. On functions preserving almost radiality and their relations to radial and pseudoradial spaces, Comment. Math. Univ. Carolinae 28.4 (1987), 357-360. (1987) | MR 0928687

Obersnel F. Some notes on weakly Whyburn spaces, Topology Appl., to appear. | MR 1957419 | Zbl 1017.54001

Pelant J.; Tkachenko M.G.; Tkachuk V.V.; Wilson R.G. Pseudocompact Whyburn spaces need not be Fréchet, to appear on PAMS. | MR 1992867 | Zbl 1028.54004

Pultr A.; Tozzi A. Equationally closed subframes and representation of quotient spaces, Cahiers de la Topologie et Géométrie Différentielle Categoriques 34 (1993), 167-183. (1993) | MR 1239466 | Zbl 0789.54008

Simon P. On accumulation points, Cahiers de la Topologie et Géométrie Différentielle Categoriques 35 (1994), 321-327. (1994) | MR 1307264 | Zbl 0858.54008

Tkachuk V.V.; Yashenko I.V. Almost closed sets and topologies they determine, Comment. Math. Univ. Carolinae 42.2 (2001), 395-405. (2001) | MR 1832158