We show that a (weakly) Whyburn space $X$ may be mapped continuously via an open map $f$ onto a non (weakly) Whyburn space $Y$. This fact may happen even between topological groups $X$ and $Y$, $f$ a homomorphism, $X$ Whyburn and $Y$ not even weakly Whyburn.
@article{119406, author = {Franco Obersnel}, title = {Open maps do not preserve Whyburn property}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {525-530}, zbl = {1098.54008}, mrnumber = {2025818}, language = {en}, url = {http://dml.mathdoc.fr/item/119406} }
Obersnel, Franco. Open maps do not preserve Whyburn property. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 525-530. http://gdmltest.u-ga.fr/item/119406/
On functions preserving almost radiality and their relations to radial and pseudoradial spaces, Comment. Math. Univ. Carolinae 28.4 (1987), 357-360. (1987) | MR 0928687
Some notes on weakly Whyburn spaces, Topology Appl., to appear. | MR 1957419 | Zbl 1017.54001
Pseudocompact Whyburn spaces need not be Fréchet, to appear on PAMS. | MR 1992867 | Zbl 1028.54004
Equationally closed subframes and representation of quotient spaces, Cahiers de la Topologie et Géométrie Différentielle Categoriques 34 (1993), 167-183. (1993) | MR 1239466 | Zbl 0789.54008
On accumulation points, Cahiers de la Topologie et Géométrie Différentielle Categoriques 35 (1994), 321-327. (1994) | MR 1307264 | Zbl 0858.54008
Almost closed sets and topologies they determine, Comment. Math. Univ. Carolinae 42.2 (2001), 395-405. (2001) | MR 1832158