Arhangel'ski\u{\i} defines in [Topology Appl. 70 (1996), 87--99], as one of various notions on relative topological properties, strong normality of $A$ in $X$ for a subspace $A$ of a topological space $X$, and shows that this is equivalent to normality of $X_A$, where $X_A$ denotes the space obtained from $X$ by making each point of $X \setminus A$ isolated. In this paper we investigate for a space $X$, its subspace $A$ and a space $Y$ the normality of the product $X_A \times Y$ in connection with the normality of $(X\times Y)_{(A\times Y)}$. The cases for paracompactness, more generally, for $\gamma$-paracompactness will also be discussed for $X_A\times Y$. As an application, we prove that for a metric space $X$ with $A \subset X$ and a countably paracompact normal space $Y$, $X_A \times Y$ is normal if and only if $X_A \times Y$ is countably paracompact.
@article{119405, author = {Takao Hoshina and Ryoken Sokei}, title = {Relative normality and product spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {515-524}, zbl = {1097.54013}, mrnumber = {2025817}, language = {en}, url = {http://dml.mathdoc.fr/item/119405} }
Hoshina, Takao; Sokei, Ryoken. Relative normality and product spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 515-524. http://gdmltest.u-ga.fr/item/119405/
On a characterization of collectionwise normality, Canad. Math. Bull. 14 (1971), 13-15. (1971) | MR 0296886 | Zbl 0209.53901
Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 87-99. (1996) | MR 1397067
Metrization of topological spaces, Canad. Math. J. 5 (1951), 175-186. (1951) | MR 0043449 | Zbl 0042.41301
Products of Michael spaces and completely metrizable spaces, Proc. Amer. Math. Soc. 129 (2000), 1535-1544. (2000) | MR 1712941
Extensions of functions which preserve the continuity on the original domain, Topology Appl. 103 (2000), 131-153. (2000) | MR 1758790 | Zbl 0986.54025
General Topology, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Products of normal spaces with Lašnev spaces, Fund. Math. 124 (1984), 143-153. (1984) | MR 0774506 | Zbl 0567.54006
Normality of product spaces, II, in K. Morita and J. Nagata, eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.121-160. | MR 1053195 | Zbl 0699.54004
Weak $C$-embedding and $P$-embedding, and product spaces, Topology Appl. 125 (2002), 233-247. (2002) | MR 1933574 | Zbl 1013.54006
On product spaces and product mappings, J. Math. Soc. Japan 18 (1966), 166-181. (1966) | MR 0193610 | Zbl 0151.29901
On subset theorems and the dimension of products, Amer. J. Math. 106 (1969), 486-498. (1969) | MR 0243517 | Zbl 0183.27702
The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. (1963) | MR 0152985 | Zbl 0114.38904
Products of normal spaces with metric spaces, {rm II}, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 8 (1962), 87-92. | MR 0166761 | Zbl 0121.39402
Note on products of normal spaces with metric spaces, unpublished.
On the dimension of the product of topological spaces, Tsukuba J. Math. 1 (1977), 1-6. (1977) | MR 0474230 | Zbl 0403.54021
Products with a metric factor, General Topology Appl. 5 (1975), 235-348. (1975) | MR 0380709 | Zbl 0305.54010
Non-normal products of $ømega_\mu$-metrizable spaces, Proc. Amer. Math. Soc. 51 (1975), 203-208. (1975) | MR 0370464