Loading [MathJax]/extensions/MathZoom.js
Linear extensions of relations between vector spaces
Száz, Árpád
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 367-385 / Harvested from Czech Digital Mathematics Library

Let $X$ and $Y$ be vector spaces over the same field $K$. Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation $F$ of $X$ into $Y$ is called linear if $\lambda F(x)\subset F(\lambda x)$ and $F(x)+F(y)\subset F(x+y)$ for all $\lambda \in K\setminus \{0\}$ and $x,y\in X$. After improving and supplementing some former results on linear relations, we show that a relation $\Phi$ of a linearly independent subset $E$ of $X$ into $Y$ can be extended to a linear relation $F$ of $X$ into $Y$ if and only if there exists a linear subspace $Z$ of $Y$ such that $\Phi (e)\in Y|Z$ for all $e\in E$. Moreover, if $E$ generates $X$, then this extension is unique. Furthermore, we also prove that if $F$ is a linear relation of $X$ into $Y$ and $Z$ is a linear subspace of $X$, then each linear selection relation $\Psi$ of $F|Z$ can be extended to a linear selection relation $\Phi$ of $F$. A particular case of this Hahn-Banach type theorem yields an easy proof of the existence of a linear selection function $f$ of $F$ such that $f\circ F^{ -1}$ is also a function.

Publié le : 2003-01-01
Classification:  15A03,  15A04,  26E25,  46A22,  47A06
@article{119393,
     author = {\'Arp\'ad Sz\'az},
     title = {Linear extensions of relations between vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {367-385},
     zbl = {1104.26305},
     mrnumber = {2026171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119393}
}
Száz, Árpád. Linear extensions of relations between vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 367-385. http://gdmltest.u-ga.fr/item/119393/

Adasch N. Der Satz über offene lineare Relationen in topologischen Vektorräumen, Note Mat. 11 (1991), 1-5. (1991) | MR 1258535

Arens R. Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23. (1961) | MR 0123188 | Zbl 0102.10201

Berge C. Topological Spaces Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity, Oliver and Boyd London (1963). (1963) | MR 1464690 | Zbl 0114.38602

Cross R. Multivalued Linear Operators, Marcel Dekker New York (1998). (1998) | MR 1631548 | Zbl 0911.47002

Dacić R. On multi-valued functions, Publ. Inst. Math. (Beograd) (N.S.) 9 (1969), 5-7. (1969) | MR 0257991

Findlay G.D. Reflexive homomorphic relations, Canad. Math. Bull. 3 (1960), 131-132. (1960) | MR 0124251 | Zbl 0100.28002

Godini G. Set-valued Cauchy functional equation, Rev. Roumaine Math. Pures Appl. 20 (1975), 1113-1121. (1975) | MR 0393920 | Zbl 0322.39013

Holá L'. Some properties of almost continuous linear relations, Acta Math. Univ. Comenian. 50-51 (1987), 61-69. (1987) | MR 0989404

Holá L'.; Kupka I. Closed graph and open mapping theorems for linear relations, Acta Math. Univ. Comenian. 46-47 (1985), 157-162. (1985) | MR 0872338

Holá L'.; Maličký P. Continuous linear selectors of linear relations, Acta Math. Univ. Comenian. 48-49 (1986), 153-157. (1986) | MR 0885328

Kelley J.L.; Namioka I. Linear Topological Spaces, D. Van Nostrand New York (1963). (1963) | MR 0166578 | Zbl 0115.09902

Nikodem K. K-convex and K-concave set-valued functions, Zeszty Nauk. Politech. Lódz. Mat. 559 (1989), 1-75. (1989)

Robinson S.M. Normed convex processes, Trans. Amer. Math. Soc. 174 (1972), 127-140. (1972) | MR 0313769

Smajdor W. Subadditive and subquadratic set-valued functions, Prace Nauk. Univ. Ślask. Katowic. 889 (1987), 1-73. (1987) | MR 0883802 | Zbl 0626.54019

Száz Á. Pointwise limits of nets of multilinear maps, Acta Sci. Math. (Szeged) 55 (1991), 103-117. (1991) | MR 1124949

Száz Á. The intersection convolution of relations and the Hahn-Banach type theorems, Ann. Polon. Math. 69 (1998), 235-249. (1998) | MR 1665007

Száz Á. An extension of Kelley's closed relation theorem to relator spaces, Filomat (Nis) 14 (2000), 49-71. (2000) | MR 1953994 | Zbl 1012.54026

Száz Á. Preseminorm generating relations and their Minkowski functionals, Publ. Elektrotehn. Fak. Univ. Beograd, Ser. Mat. 12 (2001), 16-34. (2001) | MR 1920353 | Zbl 1060.46004

Száz Á. Translation relations, the building blocks of compatible relators, Math. Montisnigri, to appear. | MR 2023739

Száz Á.; Száz G. Additive relations, Publ. Math. Debrecen 20 (1973), 259-272. (1973) | MR 0340878

Száz Á.; Száz G. Linear relations, Publ. Math. Debrecen 27 (1980), 219-227. (1980) | MR 0603995

Ursescu C. Multifunctions with convex closed graph, Czechoslovak Math. J. 25 (1975), 438-441. (1975) | MR 0388032 | Zbl 0318.46006

Wilhelm M. Criteria of openness of relations, Fund. Math. 114 (1981), 219-228. (1981) | MR 0644407