Perfect sets and collapsing continuum
Repický, Miroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 315-327 / Harvested from Czech Digital Mathematics Library

Under Martin's axiom, collapsing of the continuum by Sacks forcing $\Bbb S$ is characterized by the additivity of Marczewski's ideal (see [4]). We show that the same characterization holds true if $\frak d=\frak c$ proving that under this hypothesis there are no small uncountable maximal antichains in $\Bbb S$. We also construct a partition of $^\omega 2$ into $\frak c$ perfect sets which is a maximal antichain in $\Bbb S$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.

Publié le : 2003-01-01
Classification:  03E17,  03E40,  03E50,  54A35
@article{119388,
     author = {Miroslav Repick\'y},
     title = {Perfect sets and collapsing continuum},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {315-327},
     zbl = {1104.03045},
     mrnumber = {2026166},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119388}
}
Repický, Miroslav. Perfect sets and collapsing continuum. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 315-327. http://gdmltest.u-ga.fr/item/119388/

Balcar B.; Vojtáš P. Refining systems on Boolean algebras, in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp.45-58; MR 58 #16445. | MR 0498304

Balcar B.; Simon P. Disjoint refinement, in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp.333-388. | MR 0991597

Hausdorff F. Summen von $\aleph_1$ Mengen, Fund. Math. 26 (1936), 241-255; Zbl. 014.05402. (1936) | Zbl 0014.05402

Judah H.; Miller A.W.; Shelah S. Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic 31 (1992), 3 145-161; MR 93e:03074. (1992) | MR 1147737 | Zbl 0755.03026

Kechris A.S. Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057. | MR 1321597 | Zbl 0819.04002

Koppelberg S. Handbook of Boolean Algebras, Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003. | MR 0991565 | Zbl 0671.06001

Marczewski (Szpilrajn) E. Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34; Zbl. 0010.19901. (1935)

Miller A.W. Covering $2^ømega$ with $ømega_1$ disjoint closed sets, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp.415-421; MR 82k:03083. | MR 0591893

Newelski L. On partitions of the real line into compact sets, J. Symbolic Logic 52 (1997), 2 353-359; MR 88k:03107. (1997) | MR 0890442

Rosłanowski A.; Shelah S. More forcing notions imply diamond, Arch. Math. Logic 35 (1996), 5-6 299-313; MR 97j:03098. (1996) | MR 1420260

Simon P. Sacks forcing collapses $\frak c$ to $\frak b$, Comment. Math. Univ. Carolinae 34 (1993), 4 707-710; MR 94m:03084. (1993) | MR 1263799

Vaughan J.E. Small uncountable cardinals and topology, in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp.195-218. | MR 1078647