Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^{-1}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$.
@article{119385, author = {Melvin Henriksen and Jorge Martinez and Grant R. Woods}, title = {Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {261-294}, zbl = {1098.54013}, mrnumber = {2026163}, language = {en}, url = {http://dml.mathdoc.fr/item/119385} }
Henriksen, Melvin; Martinez, Jorge; Woods, Grant R. Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 261-294. http://gdmltest.u-ga.fr/item/119385/
Refinement properties and extensions of filters in boolean algebras, Trans. Amer. Math. Soc. 267 (1981), 265-283. (1981) | MR 0621987
Archimedean kernel-distinguishing extensions of archimedean $\ell$-groups with weak unit, Indian J. Math. 29 (3) (1987), 351-368. (1987) | MR 0971646
Groupes et Anneaux Réticulés, Lecture Notes in Math. 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 0552653 | Zbl 0384.06022
Spaces in which special sets are $z$-embedded, Canad. J. Math. 28 (1976), 673-690. (1976) | MR 0420542 | Zbl 0359.54009
Closed Mappings, Surveys in Gen. Topology, Academic Press, New York, 1980, pp.1-32. | MR 0564098 | Zbl 0476.54017
Estimates for the number of continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619-631. (1970) | MR 0263016
Complemented lattice-ordered groups, Indag. Math. (N.S.) 1 (1990), 281-297. (1990) | MR 1075880 | Zbl 0735.06006
Theory of Lattice-Ordered Groups, Pure & Appl. Math. 187, Marcel Dekker, New York, 1995. | MR 1304052 | Zbl 0810.06016
Abstract Algebra, 2nd edition, Prentice Hall, 1999. | MR 1138725 | Zbl 1037.00003
Applications of maximal topologies, Topology Appl. 51 (1993), 125-139. (1993) | MR 1229708 | Zbl 0845.54028
First countable and countable spaces all compactifications of which contain $\beta \Bbb N$, Fund. Math., 52 (1979), 229-234. (1979) | MR 0532957
General Topology, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Quotient fields of residue class rings of function rings, Illinois J. Math. 4 (1960), 425-436. (1960) | MR 0124727 | Zbl 0098.30701
Rings of Continuous Functions, Grad. Texts Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR 0407579 | Zbl 0327.46040
Fraction-dense algebras and spaces, Canad. J. Math. 45 (1993), 977-996. (1993) | MR 1239910 | Zbl 0795.06017
The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. (1965) | MR 0194880 | Zbl 0147.29105
Lattice-ordered algebras that are subdirect products of valuation domains, Trans. Amer. Math. Soc. 345 1 (September 1994), 195-221. (September 1994) | MR 1239640 | Zbl 0817.06014
Quasi-$F$ covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (2) (1987), 779-803. (1987) | MR 0902798 | Zbl 0653.54025
$m$-Quasinormal $f$-rings, J. Pure Appl. Algebra 158 (2001), 197-223. (2001) | MR 1822841 | Zbl 0987.06017
Handbook of Boolean Algebras, I., J.D. Monk, Ed., with R. Bonnet; Elsevier, Amsterdam-New York-Oxford-Tokyo, 1989. | MR 0991565
A characterization of $f$-rings in which the sum of semiprime $\ell$-ideals is semiprime and its consequences, Comm. Algebra 23 (1995), 14 5461-5481. (1995) | MR 1363616 | Zbl 0847.06007
Quasi-normal $f$-rings, in Proc. Ord. Alg. Structures (Curaçao, 1995), W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.261-275. | MR 1445116 | Zbl 0872.06013
$f$-Rings in which every maximal ideal contains finitely many minimal prime ideals, Comm. Algebra 25 (1997), 3859-3888. (1997) | MR 1481572 | Zbl 0952.06026
Almost $P$-spaces, Canad. J. Math. 29 (1977), 284-288. (1977) | MR 0464203 | Zbl 0342.54032
Normal spaces and the $G_{\delta}$-topology, Colloq. Math. 44 (1981), 227-240. (1981) | MR 0652582
$F'$-spaces and $z$-embedded subspaces, Pacific J. Math. 28 (1969), 615-621. (1969) | MR 0240782 | Zbl 0172.47903
$H$-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. LXVI (1969, Warsaw). (1969, Warsaw)
Structures determined by prime ideals of rings of functions, Trans. Amer. Math. Soc. 147 (1970), 367-380. (1970) | MR 0256174 | Zbl 0222.54014
The mapping of prime $z$-ideals, Symp. Math. 17 (1973), 113-124. (1973) | MR 0440495
Some comments on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. (1970) | MR 0268852
Measure and Category, 2nd edition, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR 0584443 | Zbl 0435.28011
Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1988. | MR 0918341 | Zbl 0652.54016
A Second Course in Real Analysis, Cambridge Univ. Press, Cambridge, England, 1982.
Sur les ensembles clairsemés, Rozprawy Mat. 19 (1959), Warsaw. (1959) | MR 0107849 | Zbl 0137.16002
Banach Spaces of Continuous Functions, Polish Scientific Publishers, Warsaw, 1971. | MR 0296671 | Zbl 0478.46014
Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci. 16 (1968), 567-572. (1968) | MR 0235517
$P'$-points, $P'$-sets and $P'$-spaces. A new class of order-continuous measures and functionals, Soviet Math. Dokl. 14 (1973), 1440-1445. (1973) | MR 0341447
Hewitt-Nachbin Spaces, North Holland Publ. Co., Amsterdam, 1975. | MR 0514909 | Zbl 0314.54002