This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma$-comp\-lete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.
@article{119384, author = {Bernhard Banaschewski and Sung Sa Hong}, title = {Completeness properties of function rings in pointfree topology}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {245-259}, zbl = {1098.06006}, mrnumber = {2026162}, language = {en}, url = {http://dml.mathdoc.fr/item/119384} }
Banaschewski, Bernhard; Hong, Sung Sa. Completeness properties of function rings in pointfree topology. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 245-259. http://gdmltest.u-ga.fr/item/119384/
$C$- and $C^*$-embedded sublocales, Dissertationes Math. 412 (2002). (2002) | MR 1952051 | Zbl 1012.54025
Universal zero-dimensional compactifications, In Categorical Topology and its Relation to Analysis, Algebra, and Combinatorics, Prague, Czechoslovakia, August 1988, World Scientific, Singapore, 1989, pp. 257-269. | MR 1047906
The frame envelope of a $\sigma$-frame, Quaest. Math. 16 (1993), 51-60. (1993) | MR 1217474 | Zbl 0779.06009
The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997. | MR 1621835 | Zbl 0891.54009
Stone-Čech compactification of locales II, J. Pure Appl. Algebra 33 (1984), 107-122. (1984) | MR 0754950 | Zbl 0549.54017
Rings of continuous functions, D. Van Nostrand, 1960. | MR 0116199 | Zbl 0327.46040
Conditions related to De Morgan's law, In Applications of Sheaves, Proceedings, Durham, 1977, Springer LNM 753 (1979), pp. 479-491. | MR 0555556 | Zbl 0445.03041
Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982, . | MR 0698074
Über das System aller stetigen Funktionen auf einen topologischen Raum, Proc. Imp. Acad. Tokyo 17 (1941), 308-310. (1941) | MR 0014173
Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186. (1949) | MR 0029091 | Zbl 0032.16901
Topology via Logic, Cambridge Tracts in Theor. Comp. Sci. No 5, Cambridge University Press, 1985. | MR 1002193 | Zbl 0922.54002