T. Brown proved that whenever we color $\Cal P_{f} (\Bbb N)$ (the set of finite subsets of natural numbers) with finitely many colors, we find a monochromatic structure, called an arithmetic copy of an $\omega $-forest. In this paper we show a canonical extension of this theorem; i.e\. whenever we color $\Cal P_{f}(\Bbb N)$ with arbitrarily many colors, we find a canonically colored arithmetic copy of an $\omega $-forest. The five types of the canonical coloring are determined. This solves a problem of T. Brown.
@article{119383, author = {Diana Piguetov\'a}, title = {A canonical Ramsey-type theorem for finite subsets of $\Bbb N$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {235-243}, zbl = {1099.05510}, mrnumber = {2026161}, language = {en}, url = {http://dml.mathdoc.fr/item/119383} }
Piguetová, Diana. A canonical Ramsey-type theorem for finite subsets of $\Bbb N$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 235-243. http://gdmltest.u-ga.fr/item/119383/
Polynomial extension of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996), 3 725-753. (1996) | MR 1325795
Set-polynomials and polynomial extension of Hales-Jewett Theorem, Ann. Math. 150 (1999), 33-75. (1999) | MR 1715320
Monochromatic forests of finite subsets of $\Bbb N$, Integers: Electronic Journal of Combinatorial Number Theory 0 (2000). (2000) | MR 1759422
Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Genève, 1980. | MR 0592420
Ramsey Theory, in Handbook of Combinatorics, editors R. Graham, M. Grötschel and L. Lovász, Elsevier Science B.V., 1995, pp.1333-1403. | MR 1373681
Combinatorial partitions of finite posets and lattices-Ramsey lattices, Algebra Universalis 19 (1984), 106-119. (1984) | MR 0748915
Note on canonical partitions, Bull. London Math. Soc. 18 (1986), 123-126. (1986) | MR 0818813 | Zbl 0584.05006