On the local moduli space of locally homogeneous affine connections in plane domains
Kowalski, Oldřich ; Vlášek, Zdeněk
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 229-234 / Harvested from Czech Digital Mathematics Library

Classification of locally homogeneous affine connections in two dimensions is a nontrivial problem. (See [5] and [7] for two different versions of the solution.) Using a basic formula by B. Opozda, [7], we prove that all locally homogeneous torsion-less affine connections defined in open domains of a 2-dimensional manifold depend essentially on at most 4 parameters (see Theorem 2.4).

Publié le : 2003-01-01
Classification:  53B05,  53C30
@article{119382,
     author = {Old\v rich Kowalski and Zden\v ek Vl\'a\v sek},
     title = {On the local moduli space of locally homogeneous affine connections in plane domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {229-234},
     zbl = {1097.53009},
     mrnumber = {2026160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119382}
}
Kowalski, Oldřich; Vlášek, Zdeněk. On the local moduli space of locally homogeneous affine connections in plane domains. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 229-234. http://gdmltest.u-ga.fr/item/119382/

Kobayashi S. Transformation Groups in Differential Geometry, Springer-Verlag, New York (1972). (1972) | MR 0355886 | Zbl 0246.53031

Kobayashi S.; Nomizu K. Foundations of Differential Geometry I, Interscience Publ., New York (1963). (1963) | MR 0152974 | Zbl 0119.37502

Kowalski O.; Opozda B.; Vlášek Z. Curvature homogeneity of affine connections on two-dimensional manifolds, Colloq. Math., ISSN 0010-1354, 81 1 123-139 (1999). (1999) | MR 1716190

Kowalski O.; Opozda B.; Vlášek Z. A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2-dimensional manifolds, Monatsh. Math., ISSN 0026-9255, 130 Springer-Verlag, Wien 109-125 (2000). (2000) | MR 1767180

Kowalski O.; Opozda B.; Vlášek Z. A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach, to appear. | MR 2041671

Nomizu K.; Sasaki T. Affine Differential Geometry, Cambridge University Press. | MR 1311248 | Zbl 1140.53001

Opozda B. Classification of locally homogeneous connections on 2-dimensional manifolds, preprint, 2002. | Zbl 1063.53024