In this paper we give necessary and sufficient conditions in order that a contractive projection on a complex $f$-algebra satisfies Seever's identity.
@article{119380, author = {Fatma Hadded}, title = {Contractive projections and Seever's identity in complex $f$-algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {203-215}, zbl = {1103.46024}, mrnumber = {2026158}, language = {en}, url = {http://dml.mathdoc.fr/item/119380} }
Hadded, Fatma. Contractive projections and Seever's identity in complex $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 203-215. http://gdmltest.u-ga.fr/item/119380/
The order bidual of almost $f$-algebras and $d$-algebras, Trans. Amer. Math. Soc. 347 (1995), 4259-4274. (1995) | MR 1308002
Unital embedding and complexification of $f$-algebras, Math. Z. 183 (1983), 131-144. (1983) | MR 0701362
Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974. | MR 0454575 | Zbl 0273.46035
Contractive projections on $C_{0}(K)$, Trans. Amer. Math. Soc. 273 (1982), 57-73. (1982) | MR 0664029
The order bidual of lattice ordered algebras II, J. Operator Theory 22 (1989), 277-290. (1989) | MR 1043728 | Zbl 0763.46004
Averaging operators and positive contractive projections, J. Math. Anal. Appl. 113 (1986), 163-184. (1986) | MR 0826666 | Zbl 0604.47024
Subalgebras and Riesz subspaces of an $f$-algebra, Proc. London Math. Soc. (3) 48 (1984), 161-174. (1984) | MR 0721777 | Zbl 0534.46010
The order bidual of lattice ordered algebras, J. Funct. Anal. 59 (1984), 41-64. (1984) | MR 0763776 | Zbl 0549.46006
Riesz Spaces I, North-Holland, Amsterdam, 1971.
Banach Lattices and Positive Operators, Springer, Berlin, 1974. | MR 0423039 | Zbl 0296.47023
Nonnegative projections on $C_{0}(X)$, Pacific J. Math. 17 (1966), 159-166. (1966) | MR 0192356 | Zbl 0137.10002
A note on averaging operators, Contemp. Math. 232 (1999), 345-348. (1999) | MR 1678346 | Zbl 0946.46006
On algebra homomorphisms in complex almost $f$-algebras, Comment. Math. Univ. Carolinae, 43.1 (2002), 23-31. (2002) | MR 1903304
When the order bidual of an $f$-algebra has a unit element, Faculté des Sciences de Tunis, preprint 2002.
Riesz Spaces II, North-Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001
Averaging projections, Illinois J. Math. 13 (1969), 689-693. (1969) | MR 0256176 | Zbl 0179.18201