We effectively construct in the Hilbert cube \Bbb H= [0,1]^\omega two sets V, W \subset \Bbb H with the following properties: (a) V \cap W = \emptyset , (b) V \cup W is discrete-dense, i.e. dense in {[0,1]_D}^\omega , where [0,1]_D denotes the unit interval equipped with the discrete topology, (c) V, W are open in \Bbb H. In fact, V = \bigcup_{\Bbb N} V_i, W = \bigcup_{\Bbb N} W_i, where V_i =\bigcup_0^{2^{i-1}-1}V_{ij}, W_i =\bigcup_0^{2^{i-1}-1}W_{ij}. V_{ij}, W_{ij} are basic open sets and (0, 0, 0, \ldots) \in V_{ij}, (1, 1, 1, \ldots) \in W_{ij}, (d) V_i \cup W_i, i \in \Bbb N is point symmetric about (1/2, 1/2, 1/2, \ldots). Instead of [0,1] we could have taken any T_4-space or a digital interval, where the resolution (number of points) increases with i.
@article{119377, author = {J. Schr\"oder}, title = {Filling boxes densely and disjointly}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {187-196}, zbl = {1099.54011}, mrnumber = {2045855}, language = {en}, url = {http://dml.mathdoc.fr/item/119377} }
Schröder, J. Filling boxes densely and disjointly. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 187-196. http://gdmltest.u-ga.fr/item/119377/
On sub-, pseudo- and quasimaximal spaces, Comment. Math. Univ. Carolinae 39.1 (1998), 198-206. (1998) | MR 1623022
Powers of the Sierpinski space, Topology Appl. 35 (1990), 299-302. (1990) | MR 1058809 | Zbl 0698.54013