If $\Omega \subset \Bbb R^n$ is a bounded domain with Lipschitz boundary $\partial \Omega $ and $\Gamma $ is an open subset of $\partial \Omega $, we prove that the following inequality $$ \biggl(\int_\Omega |A(x)\nabla u(x)|^p\,dx\biggr)^{1/p} + \biggl(\int_\Gamma |u(x)|^p\,d\Cal H^{n-1}(x)\biggr)^{1/p} \geq c\, \|u\|_{W^{1,p}{(\Omega )}} $$ holds for all $u\in W^{1,p}(\Omega ;\Bbb R^m)$ and $1
0$. Next we show that $(*)$ is not valid if $n\geq 3$, $F\in L^\infty(\Omega )$ and $\operatorname{det} F(x)=1$, but does hold if $p=2$, $\Gamma =\partial \Omega $ and $F(x)$ is symmetric and positive definite in $\Omega $.
@article{119367, author = {Waldemar Pompe}, title = {Korn's First Inequality with variable coefficients and its generalization}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {57-70}, zbl = {1098.35042}, mrnumber = {2045845}, language = {en}, url = {http://dml.mathdoc.fr/item/119367} }
Pompe, Waldemar. Korn's First Inequality with variable coefficients and its generalization. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 57-70. http://gdmltest.u-ga.fr/item/119367/
On coercivity in nonisotropic Sobolev spaces, Math. USSR-Sbornik, vol. 2 (1967), no. 4, 521-534. | Zbl 0169.47101
On singular integrals, Amer. J. Math. 78 (1956), 289-309. (1956) | MR 0084633
A Riemann version of Korn's Inequality, Calc. Var. (2001). (2001)
Mathematical Elasticity, Volume I: Three-dimensional Elasticity, North-Holland, 1988. | MR 0936420 | Zbl 0648.73014
Coercive inequalities on weighted Sobolev spaces, Coll. Math. LXVI (1994), 309-318. (1994) | MR 1268073
Sobolev Spaces, Springer, 1985. | MR 0817985 | Zbl 1152.46002
Multidimensional singular integrals and integral equations, Pergamon Press, 1965. | MR 0185399 | Zbl 0129.07701
Sur les normes équivalentes dans $W^{(k)}_p(Ømega)$ et sur la coercivité des formes formellement positives, Séminaire de mathématiques supérieures, 1965. Fasc. 19: Équations aux dérivées partielles (1966), 101-128.
Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, 1981. | MR 0600655
On Korn's First Inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh 132A (2002), 221-243. (2002) | MR 1884478
A Korn's First Inequality with $W^{1,4}(Ømega)$-coefficients, preprint.
Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation, preprint. | MR 2126571 | Zbl 1072.74013