We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\Cal H^n$, for $1+\frac{1}{\sqrt{5}}
@article{119366, author = {Silvana Marchi}, title = {$C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}<p\le2$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {33-56}, zbl = {1098.35055}, mrnumber = {2045844}, language = {en}, url = {http://dml.mathdoc.fr/item/119366} }
Marchi, Silvana. $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}
Regularity of quasilinear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867-889. (1997) | MR 1459590
Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), 263-295. (1999) | MR 1679786 | Zbl 0927.35024
An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. (1993) | MR 1239930 | Zbl 0802.35024
Existence, uniqueness and regularity results for integro-differential Heisenberg equations, Adv. in Differential Equations 1 (1996), 920-939. (1996) | MR 1409894
$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 8 (1983), 827-850. (1983) | MR 0709038
A new proof of local $C^{1+\alpha }$ regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations 45 (1982), 356-373. (1982) | MR 0672713
Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. (1975) | MR 0494315 | Zbl 0312.35026
Estimates for the $øverline{\partial}_h$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 459-522. (1974) | MR 0367477
Direct methods in the calculus of variations (in Italian), Unione Matematica Italiana, Bologna (1994). | MR 1707291
Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. (1967) | MR 0222474
The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. (1986) | MR 0850547 | Zbl 0614.35066
Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR 0244627
Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977), 201-224. (1977) | MR 0477094 | Zbl 0393.46028
Regularity of the derivatives of solutions of certain degenerate elliptic equations, Indiana Univ. Math. J. 32 6 (1983), 849-858. (1983) | MR 0721568
Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 3 (1992), 367-439. (1992) | MR 1202416 | Zbl 0804.35015
Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985. | Zbl 0692.46023
Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields, Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. (1995) | MR 1378243 | Zbl 0861.35018
$C^{1,\alpha}$ local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case $2\le p<1+\sqrt{5}$, Z. Anal. Anwendungen 20 (2001), 3 617-636. (2001) | MR 1863937 | Zbl 0988.35066
$L^p$ regularity of the derivatives in the second commutator's direction for nonlinear elliptic equations on the Heisenberg group, in print on Accademia dei XL. | Zbl 0102.20501
On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. XIV (1991), 577-591. (1991) | MR 0159138
Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147. (1985) | MR 0793239 | Zbl 0578.32044
Local behaviour of solutions of quasi-linear elliptic equations, Acta Math. 111 (1964), 247-302. (1964) | MR 0170096
Singular Integrals and Differentiability Properties, Princeton Univ. Press, Princeton, 1970. | MR 0290095 | Zbl 0281.44003
Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam-New York-Oxford, 1978. | MR 0503903 | Zbl 0830.46028
Theory of Function Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. | MR 0781540 | Zbl 1104.46001
Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. (1984) | MR 0727034
Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219-240. (1977) | MR 0474389 | Zbl 0372.35030
Degenerate quasilinear elliptic systems, Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. (1968) | MR 0244628
Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math. XLV (1992), 77-96. (1992) | MR 1135924 | Zbl 0827.35023